Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (85)
  • Open Access

    ARTICLE

    Trade-Off between Efficiency and Effectiveness: A Late Fusion Multi-View Clustering Algorithm

    Yunping Zhao1, Weixuan Liang1, Jianzhuang Lu1,*, Xiaowen Chen1, Nijiwa Kong2

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2709-2722, 2021, DOI:10.32604/cmc.2021.013389 - 28 December 2020

    Abstract Late fusion multi-view clustering (LFMVC) algorithms aim to integrate the base partition of each single view into a consensus partition. Base partitions can be obtained by performing kernel k-means clustering on all views. This type of method is not only computationally efficient, but also more accurate than multiple kernel k-means, and is thus widely used in the multi-view clustering context. LFMVC improves computational efficiency to the extent that the computational complexity of each iteration is reduced from O(n3) to O(n) (where n is the number of samples). However, LFMVC also limits the search space of the… More >

  • Open Access

    ARTICLE

    Recognition and Classification of Pomegranate Leaves Diseases by Image Processing and Machine Learning Techniques

    Mangena Venu Madhavan1, Dang Ngoc Hoang Thanh2, Aditya Khamparia1,*, Sagar Pande1, Rahul Malik1, Deepak Gupta3

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2939-2955, 2021, DOI:10.32604/cmc.2021.012466 - 28 December 2020

    Abstract Disease recognition in plants is one of the essential problems in agricultural image processing. This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly. The framework utilizes image processing techniques such as image acquisition, image resizing, image enhancement, image segmentation, ROI extraction (region of interest), and feature extraction. An image dataset related to pomegranate leaf disease is utilized to implement the framework, divided into a training set and a test set. In the implementation process, techniques such as image enhancement and image segmentation are primarily used for identifying More >

  • Open Access

    ARTICLE

    Text Detection and Classification from Low Quality Natural Images

    Ujala Yasmeen1, Jamal Hussain Shah1, Muhammad Attique Khan2, Ghulam Jillani Ansari1, Saeed ur Rehman1, Muhammad Sharif1, Seifedine Kadry3, Yunyoung Nam4,*

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1251-1266, 2020, DOI:10.32604/iasc.2020.012775 - 24 December 2020

    Abstract Detection of textual data from scene text images is a very thought-provoking issue in the field of computer graphics and visualization. This challenge is even more complicated when edge intelligent devices are involved in the process. The low-quality image having challenges such as blur, low resolution, and contrast make it more difficult for text detection and classification. Therefore, such exigent aspect is considered in the study. The technology proposed is comprised of three main contributions. (a) After synthetic blurring, the blurred image is preprocessed, and then the deblurring process is applied to recover the image.… More >

  • Open Access

    ARTICLE

    An Apriori-Based Learning Scheme towards Intelligent Mining of Association Rules for Geological Big Data

    Maojian Chen1,2,3, Xiong Luo1,2,3,*, Yueqin Zhu4, Yan Li1,2,3, Wenbing Zhao5, Jinsong Wu6

    Intelligent Automation & Soft Computing, Vol.26, No.5, pp. 973-987, 2020, DOI:10.32604/iasc.2020.010129

    Abstract The past decade has witnessed the rapid advancements of geological data analysis techniques, which facilitates the development of modern agricultural systems. However, there remains some technical challenges that should be addressed to fully exploit the potential of those geological big data, while gathering massive amounts of data in this application field. Generally, a good representation of correlation in the geological big data is critical to making full use of multi-source geological data, while discovering the relationship in data and mining mineral prediction information. Then, in this article, a scheme is proposed towards intelligent mining of More >

  • Open Access

    ARTICLE

    An Improved Algorithm of K-means Based on Evolutionary Computation

    Yunlong Wang1,2,3, Xiong Luo1,2,4,*, Jing Zhang1,2,3, Zhigang Zhao1, Jun Zhang5

    Intelligent Automation & Soft Computing, Vol.26, No.5, pp. 961-971, 2020, DOI:10.32604/iasc.2020.010128

    Abstract K-means is a simple and commonly used algorithm, which is widely applied in many fields due to its fast convergence and distinctive performance. In this paper, a novel algorithm is proposed to help K-means jump out of a local optimum on the basis of several ideas from evolutionary computation, through the use of random and evolutionary processes. The experimental results show that the proposed algorithm is capable of improving the accuracy of K-means and decreasing the SSE of K-means, which indicates that the proposed algorithm can prevent K-means from falling into the local optimum to More >

  • Open Access

    ARTICLE

    Human Activity Recognition Based on Parallel Approximation Kernel K-Means Algorithm

    Ahmed A. M. Jamel1,∗, Bahriye Akay2,†

    Computer Systems Science and Engineering, Vol.35, No.6, pp. 441-456, 2020, DOI:10.32604/csse.2020.35.441

    Abstract Recently, owing to the capability of mobile and wearable devices to sense daily human activity, human activity recognition (HAR) datasets have become a large-scale data resource. Due to the heterogeneity and nonlinearly separable nature of the data recorded by these sensors, the datasets generated require special techniques to accurately predict human activity and mitigate the considerable heterogeneity. Consequently, classic clustering algorithms do not work well with these data. Hence, kernelization, which converts the data into a new feature vector representation, is performed on nonlinearly separable data. This study aims to present a robust method to… More >

  • Open Access

    ARTICLE

    Weighted Particle Swarm Clustering Algorithm for Self-Organizing Maps

    Guorong Cui, Hao Li, Yachuan Zhang, Rongjing Bu, Yan Kang*, Jinyuan Li, Yang Hu

    Journal of Quantum Computing, Vol.2, No.2, pp. 85-95, 2020, DOI:10.32604/jqc.2020.09717 - 19 October 2020

    Abstract The traditional K-means clustering algorithm is difficult to determine the cluster number, which is sensitive to the initialization of the clustering center and easy to fall into local optimum. This paper proposes a clustering algorithm based on self-organizing mapping network and weight particle swarm optimization SOM&WPSO (Self-Organization Map and Weight Particle Swarm Optimization). Firstly, the algorithm takes the competitive learning mechanism of a self-organizing mapping network to divide the data samples into coarse clusters and obtain the clustering center. Then, the obtained clustering center is used as the initialization parameter of the weight particle swarm… More >

  • Open Access

    ARTICLE

    The Application of Sparse Reconstruction Algorithm for Improving Background Dictionary in Visual Saliency Detection

    Lei Feng1,2, Haibin Li1,*, Yakun Gao1, Yakun Zhang1

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 831-839, 2020, DOI:10.32604/iasc.2020.010117

    Abstract In the paper, we apply the sparse reconstruction algorithm of improved background dictionary to saliency detection. Firstly, after super-pixel segmentation, two bottom features are extracted: the color information of LAB and the texture features of the image by Gabor filter. Secondly, the convex hull theory is used to remove object region in boundary region, and K-means clustering algorithm is used to continue to simplify the background dictionary. Finally, the saliency map is obtained by calculating the reconstruction error. Compared with the mainstream algorithms, the accuracy and efficiency of this algorithm are better than those of More >

  • Open Access

    ARTICLE

    Reducing Operational Time Complexity of k-NN Algorithms Using Clustering in Wrist-Activity Recognition

    Sun-Taag Choe, We-Duke Cho*, Jai-Hoon Kim, and Ki-Hyung Kim

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 679-691, 2020, DOI:10.32604/iasc.2020.010102

    Abstract Recent research on activity recognition in wearable devices has identified a key challenge: k-nearest neighbors (k-NN) algorithms have a high operational time complexity. Thus, these algorithms are difficult to utilize in embedded wearable devices. Herein, we propose a method for reducing this complexity. We apply a clustering algorithm for learning data and assign labels to each cluster according to the maximum likelihood. Experimental results show that the proposed method achieves effective operational levels for implementation in embedded devices; however, the accuracy is slightly lower than that of a traditional k-NN algorithm. Additionally, our method provides More >

  • Open Access

    ARTICLE

    Lithium-Ion Battery Screening by K-Means with DBSCAN for Denoising

    Yudong Wang1, 2, Jie Tan1, *, Zhenjie Liu1, Allah Ditta3

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2111-2122, 2020, DOI:10.32604/cmc.2020.011098 - 16 September 2020

    Abstract Batteries are often packed together to meet voltage and capability needs. However, due to variations in raw materials, different ages of equipment, and manual operation, there is inconsistency between batteries, which leads to reduced available capacity, variability of resistance, and premature failure. Therefore, it is crucial to pack similar batteries together. The conventional approach to screening batteries is based on their capacity, voltage and internal resistance, which disregards how batteries perform during manufacturing. In the battery discharge process, real time discharge voltage curves (DVCs) are collected as a set of unlabeled time series, which reflect More >

Displaying 61-70 on page 7 of 85. Per Page