Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    A Data-Enhanced Deep Learning Approach for Emergency Domain Question Intention Recognition in Urban Rail Transit

    Yinuo Chen1, Xu Wu1, Jiaxin Fan1, Guangyu Zhu2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1597-1613, 2025, DOI:10.32604/cmc.2025.062779 - 09 June 2025

    Abstract The consultation intention of emergency decision-makers in urban rail transit (URT) is input into the emergency knowledge base in the form of domain questions to obtain emergency decision support services. This approach facilitates the rapid collection of complete knowledge and rules to form effective decisions. However, the current structured degree of the URT emergency knowledge base remains low, and the domain questions lack labeled datasets, resulting in a large deviation between the consultation outcomes and the intended objectives. To address this issue, this paper proposes a question intention recognition model for the URT emergency domain,… More >

  • Open Access

    ARTICLE

    A Hybrid Framework Combining Rule-Based and Deep Learning Approaches for Data-Driven Verdict Recommendations

    Muhammad Hameed Siddiqi1,*, Menwa Alshammeri1, Jawad Khan2,*, Muhammad Faheem Khan3, Asfandyar Khan4, Madallah Alruwaili1, Yousef Alhwaiti1, Saad Alanazi1, Irshad Ahmad5

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5345-5371, 2025, DOI:10.32604/cmc.2025.062340 - 19 May 2025

    Abstract As legal cases grow in complexity and volume worldwide, integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus. This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain. The proposed framework comprises three core modules: legal feature extraction, semantic similarity assessment, and verdict recommendation. For legal feature extraction, a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts. Semantic similarity between cases is evaluated using a hybrid method that… More >

  • Open Access

    ARTICLE

    An Intelligent Security Service Optimization Method Based on Knowledge Base

    Xianju Gao*, Huachun Zhou, Weilin Wang, Jingfu Yan

    Computer Systems Science and Engineering, Vol.49, pp. 19-48, 2025, DOI:10.32604/csse.2024.058327 - 03 January 2025

    Abstract The network security knowledge base standardizes and integrates network security data, providing a reliable foundation for real-time network security protection solutions. However, current research on network security knowledge bases mainly focuses on their construction, while the potential to optimize intelligent security services for real-time network security protection requires further exploration. Therefore, how to effectively utilize the vast amount of historical knowledge in the field of network security and establish a feedback mechanism to update it in real time, thereby enhancing the detection capability of security services against malicious traffic, has become an important issue. Our… More >

  • Open Access

    ARTICLE

    RoBGP: A Chinese Nested Biomedical Named Entity Recognition Model Based on RoBERTa and Global Pointer

    Xiaohui Cui1,2,#, Chao Song1,2,#, Dongmei Li1,2,*, Xiaolong Qu1,2, Jiao Long1,2, Yu Yang1,2, Hanchao Zhang3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3603-3618, 2024, DOI:10.32604/cmc.2024.047321 - 26 March 2024

    Abstract Named Entity Recognition (NER) stands as a fundamental task within the field of biomedical text mining, aiming to extract specific types of entities such as genes, proteins, and diseases from complex biomedical texts and categorize them into predefined entity types. This process can provide basic support for the automatic construction of knowledge bases. In contrast to general texts, biomedical texts frequently contain numerous nested entities and local dependencies among these entities, presenting significant challenges to prevailing NER models. To address these issues, we propose a novel Chinese nested biomedical NER model based on RoBERTa and Global Pointer… More >

  • Open Access

    ARTICLE

    Multi-Domain Malicious Behavior Knowledge Base Framework for Multi-Type DDoS Behavior Detection

    Ouyang Liu, Kun Li*, Ziwei Yin, Deyun Gao, Huachun Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2955-2977, 2023, DOI:10.32604/iasc.2023.039995 - 11 September 2023

    Abstract Due to the many types of distributed denial-of-service attacks (DDoS) attacks and the large amount of data generated, it becomes a challenge to manage and apply the malicious behavior knowledge generated by DDoS attacks. We propose a malicious behavior knowledge base framework for DDoS attacks, which completes the construction and application of a multi-domain malicious behavior knowledge base. First, we collected malicious behavior traffic generated by five mainstream DDoS attacks. At the same time, we completed the knowledge collection mechanism through data pre-processing and dataset design. Then, we designed a malicious behavior category graph and… More >

  • Open Access

    ARTICLE

    An Ontology-Based Question Answering System for University Admissions Advising

    Thi Thanh Sang Nguyen*, Dang Huu Trong Ho, Ngoc Tram Anh Nguyen

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 601-616, 2023, DOI:10.32604/iasc.2023.032080 - 29 September 2022

    Abstract Question-Answer systems are now very popular and crucial to support human in automatically responding frequent questions in many fields. However, these systems depend on learning methods and training data. Therefore, it is necessary to prepare such a good dataset, but it is not an easy job. An ontology-based domain knowledge base is able to help to reason semantic information and make effective answers given user questions. This study proposes a novel chatbot model involving ontology to generate efficient responses automatically. A case study of admissions advising at the International University–VNU HCMC is taken into account… More >

  • Open Access

    ARTICLE

    A Prototype for Diagnosis of Psoriasis in Traditional Chinese Medicine

    Hai Long1, Zhe Wang1, Yidi Cui2,3, Junhui Wang4, Bo Gao5, Chao Chen5, Yan Zhu5,*, Heinrich Herre1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5197-5217, 2022, DOI:10.32604/cmc.2022.029365 - 28 July 2022

    Abstract Psoriasis is a chronic, non-communicable, painful, disfiguring and disabling disease for which there is no cure, with great negative impact on patients’ quality of life (QoL). Diagnosis and treatment with traditional Chinese medical technique based on syndrome differentiation has been used in practice for a long time and proven effective, though, up to now, there are only a few available studies about the use of semantic technologies and the knowledge systems that use Traditional Chinese Medicine (TCM)-syndrome differentiation for information retrieval and automated reasoning. In this paper we use semantic techniques based on ontologies to… More >

  • Open Access

    ARTICLE

    Gaining-Sharing Knowledge Based Algorithm for Solving Stochastic Programming Problems

    Prachi Agrawal1, Khalid Alnowibet2, Ali Wagdy Mohamed3,4,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2847-2868, 2022, DOI:10.32604/cmc.2022.023126 - 07 December 2021

    Abstract This paper presents a novel application of metaheuristic algorithms for solving stochastic programming problems using a recently developed gaining sharing knowledge based optimization (GSK) algorithm. The algorithm is based on human behavior in which people gain and share their knowledge with others. Different types of stochastic fractional programming problems are considered in this study. The augmented Lagrangian method (ALM) is used to handle these constrained optimization problems by converting them into unconstrained optimization problems. Three examples from the literature are considered and transformed into their deterministic form using the chance-constrained technique. The transformed problems are More >

  • Open Access

    ARTICLE

    Alzheimer’s Disease Diagnosis Based on a Semantic Rule-Based Modeling and Reasoning Approach

    Nora Shoaip1, Amira Rezk1, Shaker EL-Sappagh2,3, Tamer Abuhmed4,*, Sherif Barakat1, Mohammed Elmogy5

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3531-3548, 2021, DOI:10.32604/cmc.2021.019069 - 24 August 2021

    Abstract Alzheimer’s disease (AD) is a very complex disease that causes brain failure, then eventually, dementia ensues. It is a global health problem. 99% of clinical trials have failed to limit the progression of this disease. The risks and barriers to detecting AD are huge as pathological events begin decades before appearing clinical symptoms. Therapies for AD are likely to be more helpful if the diagnosis is determined early before the final stage of neurological dysfunction. In this regard, the need becomes more urgent for biomarker-based detection. A key issue in understanding AD is the need… More >

  • Open Access

    ARTICLE

    A Survey of Knowledge Based Question Answering with Deep Learning

    Chaoyu Deng, Guangfu Zeng, Zhiping Cai, Xiaoqiang Xiao*

    Journal on Artificial Intelligence, Vol.2, No.4, pp. 157-166, 2020, DOI:10.32604/jai.2020.011541 - 31 December 2020

    Abstract The purpose of automated question answering is to let the machine understand natural language questions and give accurate answers in the form of natural language. This technology requires the machine to store a large amount of background knowledge. In recent years, the rapid development of knowledge graph has made the knowledge based question answering (KBQA) more and more popular. Traditional styles of KBQA methods mainly include semantic parsing, information extraction and vector modeling. With the development of deep learning, KBQA with deep learning has gradually become the mainstream method. This paper introduces the application of More >

Displaying 1-10 on page 1 of 13. Per Page