Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    PROCEEDINGS

    An Explicit and Non-Iterative Moving-Least-Squares Immersed-Boundary Method and Its Applications in the Aorta Hemodynamics with Type B Intramural Hematoma

    Wenyuan Chen1, Tao Zhang2, Yantao Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09754

    Abstract Based on the moving-least-squares immersed boundary method, we proposed a new technique to improve the calculation of the volume force representing the body boundary. For boundary with simple geometry, we theoretically analyze the error between the desired volume force at boundary and the actual force applied by the original method. The ratio between the two forces is very close to a constant and exhibits a very narrow distribution. A spatially uniform coefficient is then introduced to correct the force and can be fixed by the least-square method over all boundary markers. Such method is explicit and non-iterative, and is easy… More >

  • Open Access

    ARTICLE

    Multi-Branch Fault Line Location Method Based on Time Difference Matrix Fitting

    Hua Leng1, Silin He2, Jian Qiu3, Feng Liu4,*, Xinfei Huang4, Jiran Zhu2

    Energy Engineering, Vol.121, No.1, pp. 77-94, 2024, DOI:10.32604/ee.2023.028340

    Abstract The distribution network exhibits complex structural characteristics, which makes fault localization a challenging task. Especially when a branch of the multi-branch distribution network fails, the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system. In this paper, the multi-branch mainline is decomposed into single branch lines, transforming the complex multi-branch fault location problem into a double-ended fault location problem. Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines, the endpoint reference time difference matrix S and the fault time difference… More >

  • Open Access

    ARTICLE

    Retrieval of Winter Wheat Canopy Carotenoid Content with Ground- and Airborne-Based Hyperspectral Data

    Ting Cui, Xianfeng Zhou*, Yufeng Huang, Yanting Guo, Yunrui Lin, Leyi Song, Jingcheng Zhang

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2633-2648, 2023, DOI:10.32604/phyton.2023.029259

    Abstract Accurate assessment of canopy carotenoid content (CCx+cC) in crops is central to monitor physiological conditions in plants and vegetation stress, and consequently supporting agronomic decisions. However, due to the overlap of absorption peaks of carotenoid (Cx+c) and chlorophyll (Ca), accurate estimation of carotenoid using reflectance where carotenoid absorb is challenging. The objective of present study was to assess CCx+cC in winter wheat (Triticum aestivum L.) with ground- and aircraft-based hyperspectral measurements in the visible and near-infrared spectrum. In-situ hyperspectral reflectance were measured and airborne hyperspectral data were acquired during major growth stages of winter wheat in five consecutive field experiments.… More >

  • Open Access

    ARTICLE

    Multi-View & Transfer Learning for Epilepsy Recognition Based on EEG Signals

    Jiali Wang1, Bing Li2, Chengyu Qiu1, Xinyun Zhang1, Yuting Cheng1, Peihua Wang1, Ta Zhou3, Hong Ge2, Yuanpeng Zhang1,3,*, Jing Cai3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4843-4866, 2023, DOI:10.32604/cmc.2023.037457

    Abstract Epilepsy is a central nervous system disorder in which brain activity becomes abnormal. Electroencephalogram (EEG) signals, as recordings of brain activity, have been widely used for epilepsy recognition. To study epileptic EEG signals and develop artificial intelligence (AI)-assist recognition, a multi-view transfer learning (MVTL-LSR) algorithm based on least squares regression is proposed in this study. Compared with most existing multi-view transfer learning algorithms, MVTL-LSR has two merits: (1) Since traditional transfer learning algorithms leverage knowledge from different sources, which poses a significant risk to data privacy. Therefore, we develop a knowledge transfer mechanism that can protect the security of source… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Equal and Unequal Grounding Grid Configurations by Compression Ratio and Least Square Curve Fitting Techniques

    M. Soni*, Abraham George

    Energy Engineering, Vol.120, No.3, pp. 597-616, 2023, DOI:10.32604/ee.2023.021301

    Abstract The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power system to maintain reliable operation. With equal conductor spacing grounding grid design, the distribution of the current in the grid is not uniform. Hence, unequal grid conductor span in which grid conductors are concentrated more at the periphery is safer to practice than equal spacing. This paper presents the comparative analysis of two novel techniques that create unequal spacing among the grid conductors: the least-square curve fitting technique and the compression ratio technique with equal grid configuration for both square… More >

  • Open Access

    ARTICLE

    Process Characterization of the Transesterification of Rapeseed Oil to Biodiesel Using Design of Experiments and Infrared Spectroscopy

    Tobias Drieschner1,2,*, Andreas Kandelbauer1, Bernd Hitzmann2, Karsten Rebner1

    Journal of Renewable Materials, Vol.11, No.4, pp. 1643-1660, 2023, DOI:10.32604/jrm.2023.024429

    Abstract For optimization of production processes and product quality, often knowledge of the factors influencing the process outcome is compulsory. Thus, process analytical technology (PAT) that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality. The present study aims at characterizing a well-known industrial process, the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters (FAME) for usage as biodiesel in a continuous micro reactor set-up. To this end, a… More >

  • Open Access

    ARTICLE

    Enhancing the Effectiveness of Trimethylchlorosilane Purification Process Monitoring with Variational Autoencoder

    Jinfu Wang1, Shunyi Zhao1,*, Fei Liu1, Zhenyi Ma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 531-552, 2022, DOI:10.32604/cmes.2022.019521

    Abstract In modern industry, process monitoring plays a significant role in improving the quality of process conduct. With the higher dimensional of the industrial data, the monitoring methods based on the latent variables have been widely applied in order to decrease the wasting of the industrial database. Nevertheless, these latent variables do not usually follow the Gaussian distribution and thus perform unsuitable when applying some statistics indices, especially the T2 on them. Variational AutoEncoders (VAE), an unsupervised deep learning algorithm using the hierarchy study method, has the ability to make the latent variables follow the Gaussian distribution. The partial least squares… More >

  • Open Access

    ARTICLE

    Multilevel Modelling for Surgical Tool Calibration Using LINEX Loss Function

    Mansour F. Yassen1,2,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1691-1706, 2022, DOI:10.32604/cmc.2022.029701

    Abstract Quantifying the tool–tissue interaction forces in surgery can be utilized in the training of inexperienced surgeons, assist them better use surgical tools and avoid applying excessive pressures. The voltages read from strain gauges are used to approximate the unknown values of implemented forces. To this objective, the force-voltage connection must be quantified in order to evaluate the interaction forces during surgery. The progress of appropriate statistical learning approaches to describe the link between the genuine force applied on the tissue and numerous outputs obtained from sensors installed on surgical equipment is a key problem. In this study, different probabilistic approaches… More >

  • Open Access

    ARTICLE

    Tuning Rules for Fractional Order PID Controller Using Data Analytics

    P. R. Varshini*, S. Baskar, M. Varatharajan, S. Sadhana

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1787-1799, 2022, DOI:10.32604/iasc.2022.024192

    Abstract

    Flexibility and robust performance have made the FOPID (Fractional Order PID) controllers a better choice than PID (Proportional, Integral, Derivative) controllers. But the number of tuning parameters decreases the usage of FOPID controllers. Using synthetic data in available FOPID tuners leads to abnormal controller performances limiting their applicability. Hence, a new tuning methodology involving real-time data and overcomes the drawbacks of mathematical modeling is the need of the hour. This paper proposes a novel FOPID controller tuning methodology using machine learning algorithms. Feed Forward Back Propagation Neural Network (FFBPNN), Multi Least Squares Support Vector Regression (MLSSVR) chosen to design Machine… More >

  • Open Access

    ARTICLE

    A Sensitive Wavebands Identification System for Smart Farming

    M. Kavitha*, M. Sujaritha

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 245-257, 2022, DOI:10.32604/csse.2022.023320

    Abstract Sensing the content of macronutrients in the agricultural soil is an essential task in precision agriculture. It helps the farmers in the optimal use of fertilizers. It reduces the cost of food production and also the negative environmental impacts on atmosphere and water bodies due to indiscriminate dosage of fertilizers. The traditional chemical-based laboratory soil analysis methods do not serve the purpose as they are hardly suitable for site specific soil management. Moreover, the spectral range used in the chemical-based laboratory soil analysis may be of 350–2500 nm, which leads to redundancy and confusion. Developing sensors based on the discovery of… More >

Displaying 1-10 on page 1 of 100. Per Page