Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Simulation of Three-dimensional Complex Flows in Injection Molding Using Immersed Boundary Method

    Qiang Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.3, pp. 207-224, 2013, DOI:10.32604/cmes.2013.094.207

    Abstract In this paper, an immersed boundary method (IBM) has been developed to simulate three-dimensional (3D) complex flows in the injection molding process, in which the irregular boundary of mould is treated by a level set function. The melt front (melt-air interface) is captured and treated using the coupled level set and volume of fluid (CLSVOF) method. The finite volume method on the nonstaggered meshes is implemented to solve the governing equations, and the melt filling process is simulated in a rectangular mould with both thick- and thin-wall sections. The numerical result shows good agreement with More >

  • Open Access

    ARTICLE

    Numerical Modelling of Turbulence Effects on Droplet Collision Dynamics using the Level Set Method

    Ashraf Balabel1,

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.4, pp. 283-301, 2012, DOI:10.3970/cmes.2012.089.283

    Abstract This paper presents a novel numerical method for solving the twophase flow problems with moving interfaces in either laminar or turbulent flow regimes. The developed numerical method is based on the solution of the Reynolds- Averaged Navier Stokes equations in both phases separately with appropriate boundary conditions located at the interface separating the two fluids. The solution algorithm is performed on a regular and structured two-dimensional computational grid using the control volume approach. The complex shapes as well as the geometrical quantities of the interface are determined via the level set method. The numerical method More >

  • Open Access

    ARTICLE

    Design of Compliant Mechanisms Using Meshless Level Set Methods

    Zhen Luo1, Nong Zhang1, Tao Wu2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.4, pp. 299-328, 2012, DOI:10.3970/cmes.2012.085.299

    Abstract This paper presents a meshless Galerkin level-set method (MGLSM) for shape and topology optimization of compliant mechanisms of geometrically nonlinear structures. The design boundary of the mechanism is implicitly described as the zero level set of a Lipschitz continuous level set function of higher dimension. The moving least square (MLS) approximation is used to construct the meshless shape functions with the global Galerkin weak-form in terms of a set of arbitrarily distributed nodes. The MLS shape function is first employed to parameterize the level set function via the surface fitting rather than interpolation, and then… More >

  • Open Access

    ARTICLE

    A Generalized Level Set-Navier Stokes Numerical Method for Predicting Thermo-Fluid Dynamics of Turbulent Free Surface

    Ashraf Balabel

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.6, pp. 599-638, 2012, DOI:10.3970/cmes.2012.083.599

    Abstract In the present paper, a new generalized level set numerical method based on the Fast Marching Method is developed for predicting the moving interface thermo-fluid dynamics in turbulent free surface flows. The numerical method is devoted to predict the turbulent interfacial dynamics resulting from either aerodynamic force or thermocapillary effects. The unsteady Reynolds averaged Navier-Stokes equations (RANS) and energy equation are coupled with the level set method and solved separately in each phase using the finite volume method on a non-staggered grid system. The application of the fast marching technique enables the fast as well… More >

  • Open Access

    ARTICLE

    A Physically Meaningful Level Set Method for Topology Optimization of Structures

    Zhen Luo1,2, Nong Zhang1,3, Yu Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.1, pp. 73-96, 2012, DOI:10.3970/cmes.2012.083.073

    Abstract This paper aims to present a physically meaningful level set method for shape and topology optimization of structures. Compared to the conventional level set method which represents the design boundary as the zero level set, in this study the boundary is embedded into non-zero constant level sets of the level set function, to implicitly implement shape fidelity and topology changes in time via the propagation of the discrete level set function. A point-wise nodal density field, non-negative and value-bounded, is used to parameterize the level set function via the compactly supported radial basis functions (CSRBFs)… More >

  • Open Access

    ARTICLE

    Thermal Effects on the Spreading and Solidification of a Micrometric Molten Particle Impacting onto a Rigid Substrate

    S. Oukach1,2,3, H. Hamdi2, M. El Ganaoui4, B. Pateyron1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.2, pp. 173-196, 2012, DOI:10.3970/fdmp.2012.008.173

    Abstract The splat formation is one of the basic processes in thermal spray coatings. The performance of these coatings is strongly related to the process of spreading and solidification of molten droplets. The aim of the present paper is to simulate the fluid flow, heat transfer and phase-change that occur when a micrometric molten droplet impacts onto a rigid substrate and to examine the effect of the substrate conditions, such as initial temperature and material on the solidification time and spreading process. The effect of thermal contact resistance is also investigated. The simulation model used is More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Fiber Reinforced Polymer Mold Filling Process by Level Set Method

    Binxin Yang1, Jie Ouyang1, Tao Jiang1, Chuntai Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.3, pp. 191-222, 2010, DOI:10.3970/cmes.2010.063.191

    Abstract A gas-solid-liquid three-phase model is proposed for fiber reinforced composites mold filling process. The fluid flow is described in Eulerian coordinate while the dynamics of fibers is described in Langrangian coordinate. The interaction of fluid flow and fibers are enclosed in the model. The influence of fluid flow on fibers is described by the resultant forces imposed on fibers and the influence of fibers on fluid flow is described by the momentum exchange source term in the model. A finite volume method coupled with a level set method for viscoelastic-Newtonian fluid flow is used to More >

  • Open Access

    ARTICLE

    Topological Shape Optimization of Electromagnetic Problems using Level Set Method and Radial Basis Function

    Hokyung Shim1, Vinh Thuy Tran Ho1,,Semyung Wang1,2, Daniel A. Tortorelli3

    CMES-Computer Modeling in Engineering & Sciences, Vol.37, No.2, pp. 175-202, 2008, DOI:10.3970/cmes.2008.037.175

    Abstract This paper presents a topological shape optimization technique for electromagnetic problems using a level set method and radial basis functions. The proposed technique is a level set (LS) based optimization dealing with geometrical shape derivatives and topological design. The shape derivative is computed by an adjoint variable method to avoid numerous sensitivity evaluations. A level set model embedded into the scalar function of higher dimensions is propagated to represent the design boundary of a domain. The level set function interpolated into a fixed initial domain is evolved by using the Hamilton-Jacobi equation. The moving free… More >

  • Open Access

    ARTICLE

    A Meshless Approach to Capturing Moving Interfaces in Passive Transport Problems

    L. Mai-Cao1, T. Tran-Cong2

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.3, pp. 157-188, 2008, DOI:10.3970/cmes.2008.031.157

    Abstract This paper presents a new meshless numerical approach to solving a special class of moving interface problems known as the passive transport where an ambient flow characterized by its velocity field causes the interfaces to move and deform without any influences back on the flow. In the present approach, the moving interface is captured by the level set method at all time as the zero contour of a smooth function known as the level set function whereas one of the two new meshless schemes, namely the SL-IRBFN based on the semi-Lagrangian method and the Taylor-IRBFN More >

  • Open Access

    ABSTRACT

    Free Surfaces Modeling Based on Level Sets

    Hans Mühlhaus1, Laurent Bourgouin1, Alina Hale1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.4, pp. 225-232, 2007, DOI:10.3970/icces.2007.003.225

    Abstract We use a finite element formulation of the level set method to model the evolution of the free surface of axi-symmetric spreading flows of highly viscous media on a horizontal plane. We consider specifically the growth of a lava dome as an example however similar problems also occur in flows involving the spreading of molten metals or ceramics. Here we restrict ourselves on constant viscosity fluids for simplicity. In real lavas or melts the viscosity is highly temperature dependent. This manifests itself in the formation of thin predominantly elastic-plastic boundary layers along the free (cold) More >

Displaying 21-30 on page 3 of 40. Per Page