Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Level Set Topology Optimization with Autonomous Hole Formation Using Material Removal Scheme of SIMP

    Fei Wu1, Ziyang Zeng1,2, Kunliang Xie1, Yuqiang Liu1, Jiang Ding1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1689-1710, 2025, DOI:10.32604/cmes.2025.071256 - 26 November 2025

    Abstract The level set method (LSM) is renowned for producing smooth boundaries and clear geometric representations, facilitating integration with CAD environments. However, its inability to autonomously generate new holes during optimization makes the results highly dependent on the initial design. Although topological derivatives are often introduced to enable hole nucleation, their conversion into effective shape derivatives remains challenging, limiting topological evolution. To address this, a level set topology optimization method with autonomous hole formation (LSM-AHF) is proposed, integrating the material removal mechanism of the SIMP (Solid Isotropic Material with Penalization) method into the LSM framework. First,… More >

  • Open Access

    ARTICLE

    Topology Optimization of Lattice Structures through Data-Driven Model of M-VCUT Level Set Based Substructure

    Minjie Shao, Tielin Shi, Qi Xia*, Shiyuan Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2685-2703, 2025, DOI:10.32604/cmes.2025.068078 - 30 September 2025

    Abstract A data-driven model of multiple variable cutting (M-VCUT) level set-based substructure is proposed for the topology optimization of lattice structures. The M-VCUT level set method is used to represent substructures, enriching their diversity of configuration while ensuring connectivity. To construct the data-driven model of substructure, a database is prepared by sampling the space of substructures spanned by several substructure prototypes. Then, for each substructure in this database, the stiffness matrix is condensed so that its degrees of freedom are reduced. Thereafter, the data-driven model of substructures is constructed through interpolation with compactly supported radial basis More >

  • Open Access

    ARTICLE

    Reliability Topology Optimization Based on Kriging-Assisted Level Set Function and Novel Dynamic Hybrid Particle Swarm Optimization Algorithm

    Hang Zhou*, Xiaojun Ding, Song Chen, Qijun Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1907-1933, 2025, DOI:10.32604/cmes.2025.069198 - 31 August 2025

    Abstract Structural Reliability-Based Topology Optimization (RBTO), as an efficient design methodology, serves as a crucial means to ensure the development of modern engineering structures towards high performance, long service life, and high reliability. However, in practical design processes, topology optimization must not only account for the static performance of structures but also consider the impacts of various responses and uncertainties under complex dynamic conditions, which traditional methods often struggle accommodate. Therefore, this study proposes an RBTO framework based on a Kriging-assisted level set function and a novel Dynamic Hybrid Particle Swarm Optimization (DHPSO) algorithm. By leveraging… More >

  • Open Access

    PROCEEDINGS

    Improved XFEM (IXFEM): Accurate, Efficient, Robust and Reliable Analysis for Arbitrary Multiple Crack Problems

    Lixiang Wang1, Longfei Wen2,3, Rong Tian2,3,*, Chun Feng1,4,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011137

    Abstract The extended finite element method (XFEM) has been successful in crack analysis but faces challenges in modeling multiple cracks. One challenge is the linear dependence and ill-conditioning of the global stiffness matrix, while another is the geometric description for multiple cracks. To address the first challenge, the Improved XFEM (IXFEM) [1–9] is extended to handle multiple crack problems, effectively eliminating issues of linear dependence and ill-conditioning. Additionally, to overcome the second challenge, a novel level set templated cover cutting method (LSTCCM) [10] is proposed, which combines the advantages of the level set method and cover More >

  • Open Access

    ARTICLE

    Concurrent Two–Scale Topology Optimization of Thermoelastic Structures Using a M–VCUT Level Set Based Model of Microstructures

    Jin Zhou, Minjie Shao*, Ye Tian, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1327-1345, 2024, DOI:10.32604/cmes.2024.054059 - 27 September 2024

    Abstract By analyzing the results of compliance minimization of thermoelastic structures, we observed that microstructures play an important role in this optimization problem. Then, we propose to use a multiple variable cutting (M–VCUT) level set-based model of microstructures to solve the concurrent two–scale topology optimization of thermoelastic structures. A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes, thus giving more diversity of microstructure and more flexibility in design optimization. The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method, and then More >

  • Open Access

    ARTICLE

    A Hybrid Level Set Optimization Design Method of Functionally Graded Cellular Structures Considering Connectivity

    Yan Dong1,2, Kang Zhao1, Liang Gao1, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1-18, 2024, DOI:10.32604/cmc.2024.048870 - 25 April 2024

    Abstract With the continuous advancement in topology optimization and additive manufacturing (AM) technology, the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly. However, a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures, potentially resulting in diminished efficiency or macroscopic failure. A Hybrid Level Set Method (HLSM) is proposed, specifically designed to enhance connectivity among non-uniform microstructures, contributing to the design of functionally graded cellular structures. The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.… More >

  • Open Access

    ARTICLE

    Buckling Optimization of Curved Grid Stiffeners through the Level Set Based Density Method

    Zhuo Huang, Ye Tian, Yifan Zhang, Tielin Shi, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 711-733, 2024, DOI:10.32604/cmes.2024.045411 - 16 April 2024

    Abstract Stiffened structures have great potential for improving mechanical performance, and the study of their stability is of great interest. In this paper, the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method, where the shape and cross section (including thickness and width) of the stiffeners can be optimized simultaneously. The grid stiffeners are a combination of many single stiffeners which are projected by the corresponding level set functions. The thickness and width of each stiffener are designed to be independent variables in the More >

  • Open Access

    ARTICLE

    Topology Optimization for Steady-State Navier-Stokes Flow Based on Parameterized Level Set Based Method

    Peng Wei1, Zirun Jiang1, Weipeng Xu1, Zhenyu Liu2, Yongbo Deng2,3, Minqiang Pan4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 593-619, 2023, DOI:10.32604/cmes.2023.023978 - 05 January 2023

    Abstract In this paper, we consider solving the topology optimization for steady-state incompressible Navier-Stokes problems via a new topology optimization method called parameterized level set method, which can maintain a relatively smooth level set function with a local optimality condition. The objective of topology optimization is to find an optimal configuration of the fluid and solid materials that minimizes power dissipation under a prescribed fluid volume fraction constraint. An artificial friction force is added to the Navier-Stokes equations to apply the no-slip boundary condition. Although a great deal of work has been carried out for topology More >

  • Open Access

    ARTICLE

    Night Vision Object Tracking System Using Correlation Aware LSTM-Based Modified Yolo Algorithm

    R. Anandha Murugan1,*, B. Sathyabama2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 353-368, 2023, DOI:10.32604/iasc.2023.032355 - 29 September 2022

    Abstract Improved picture quality is critical to the effectiveness of object recognition and tracking. The consistency of those photos is impacted by night-video systems because the contrast between high-profile items and different atmospheric conditions, such as mist, fog, dust etc. The pictures then shift in intensity, colour, polarity and consistency. A general challenge for computer vision analyses lies in the horrid appearance of night images in arbitrary illumination and ambient environments. In recent years, target recognition techniques focused on deep learning and machine learning have become standard algorithms for object detection with the exponential growth of… More >

  • Open Access

    ARTICLE

    Cervical Cancer Detection Based on Novel Decision Tree Approach

    S. R. Sylaja Vallee Narayan1,*, R. Jemila Rose2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1025-1038, 2023, DOI:10.32604/csse.2023.022564 - 15 June 2022

    Abstract Cervical cancer is a disease that develops in the cervix’s tissue. Cervical cancer mortality is being reduced due to the growth of screening programmers. Cervical cancer screening is a big issue because the majority of cervical cancer screening treatments are invasive. Hence, there is apprehension about standard screening procedures, as well as the time it takes to learn the results. There are different methods for detecting problems in the cervix using Pap (Papanicolaou-stained) test, colposcopy, Computed Tomography (CT), Magnetic Resonance Image (MRI) and ultrasound. To obtain a clear sketch of the infected regions, using a… More >

Displaying 1-10 on page 1 of 40. Per Page