Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

    Francisco Daniel García1,2, Solange Nicole Aigner1,2, Natalia Raffaeli3, Antonio José Barotto3, Eleana Spavento3, Mariano Martín Escobar1,4, Marcela Angela Mansilla1,4, Alejandro Bacigalupe1,4,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0181 - 23 January 2026

    Abstract This study explores the use of black soldier fly larvae protein as a bio-based adhesive to produce particleboards from sugarcane bagasse. A comprehensive evaluation was conducted, including rheological characterization of the adhesive and physical–mechanical testing of the panels according to European standards. The black soldier fly larvae-based adhesive exhibited gel-like viscoelastic behavior, rapid partial structural recovery after shear, and favorable application properties. Particleboards manufactured with this adhesive and sugarcane bagasse achieved promising mechanical performance, with modulus of rupture and modulus of elasticity values of 30.2 and 3500 MPa, respectively. Internal bond strength exceeded 0.4 MPa,… More > Graphic Abstract

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

  • Open Access

    REVIEW

    Transforming Sawdust Waste into Renewable Energy Resources: A Comprehensive Review on Sustainable Bio-Oil and Biochar Production via Thermochemical Processes

    Hauwau Kaoje1,2, Adekunle Adeleke2,3,*, Esther Anosike-Francis2,3, Seun Jesuloluwa2,3, Temitayo Ogedengbe2,3, Hauwa Rasheed2, Jude Okolie4

    Journal of Renewable Materials, Vol.13, No.12, pp. 2375-2430, 2025, DOI:10.32604/jrm.2025.02025-0109 - 23 December 2025

    Abstract The increasing need for sustainable energy and the environmental impacts of reliance on fossil fuels have sparked greater interest in biomass as a renewable energy source. This review provides an in-depth assessment of bio-oil and biochar generation through the pyrolysis of sawdust, a significant variety of lignocellulosic biomass. The paper investigates different thermochemical conversion methods, including fast, slow, catalytic, flash, and co-pyrolysis, while emphasizing their operational parameters, reactor designs, and effects on product yields. The influence of temperature, heating rate, and catalysts on enhancing the quality and quantity of bio-oil and biochar is thoroughly analyzed. More > Graphic Abstract

    Transforming Sawdust Waste into Renewable Energy Resources: A Comprehensive Review on Sustainable Bio-Oil and Biochar Production via Thermochemical Processes

  • Open Access

    ARTICLE

    Acetylation of Corn Stalk (Zea mays) for Its Valorization

    Jhony César Muñoz Zambrano, Douglas Alexander Bermúdez Parrales, María Antonieta Riera*

    Journal of Polymer Materials, Vol.42, No.3, pp. 837-851, 2025, DOI:10.32604/jpm.2025.067277 - 30 September 2025

    Abstract Agricultural waste is a potentially interesting resource due to the compounds present. In this study, cellulose was extracted from corn stalks (Zea mays) and subsequently converted into cellulose acetate (CA). Before the extraction process, the waste sample was characterized by pH, moisture, ash, protein content, total reducing sugars (TRS), carbohydrates, cellulose, hemicellulose, and lignin. Acid and alkaline hydrolysis were performed with different reagents, concentrations, and extraction times. Sulfuric acid (H2SO4) and acetic acid (CH3COOH) were used in the acid hydrolysis, while sodium hydroxide (NaOH) was used in the alkaline hydrolysis. Three concentrations (0.62, 1.25, 2.5)% and two… More >

  • Open Access

    ARTICLE

    Development of Loose-Fill Thermal Insulation Materials from Annual Plant Residues Using Low-Concentration Chemimechanical Pulping

    Andris Berzins1,2, Ramunas Tupciauskas1,*, Gunars Pavlovics1, Martins Andzs1

    Journal of Renewable Materials, Vol.13, No.6, pp. 1189-1207, 2025, DOI:10.32604/jrm.2025.02024-0067 - 23 June 2025

    Abstract This study examines the development of loose-fill thermal insulation materials derived from annual plant residues, such as wheat straw, water reeds, and corn stalks, processed using the chemimechanical pulping (CMP) technique. The chopped plants were soda-cooked for 30 min, varying NaOH concentration (2%–8% on a dry basis of biomass), and mechanically refined using different disc types. The CMP process enhances the homogeneity and stability of defibrated material, yielding improved insulation properties compared to untreated chopped raw materials. Chemical analysis revealed that CMP increases cellulose content and reduces lignin levels, enhancing water retention and vapor diffusion… More > Graphic Abstract

    Development of Loose-Fill Thermal Insulation Materials from Annual Plant Residues Using Low-Concentration Chemimechanical Pulping

  • Open Access

    REVIEW

    Lignocellulosic Biocomposite Membranes for Air Filtration and Environmental Protection: A Review

    Abiodun Abdulhameed Amusa1,*, Anwar Johari1, Kamil Kayode Katibi2,3, Ibrahim Garba Shitu4,5, Abdulrahman Oyekanmi Adeleke6, Mohd Fairus Mohd Yasin7, Muhammad Thalhah Zainal8

    Journal of Renewable Materials, Vol.13, No.2, pp. 251-272, 2025, DOI:10.32604/jrm.2025.057487 - 20 February 2025

    Abstract The increasing severity of air pollution necessitates more effective and sustained air filtration technology. Concurrently, the desire for more environmentally friendly, sustainable materials with better filtering performance and less environmental impact drives the move away from conventional synthetic membranes. This review presents lignocellulosic biocomposite (LigBioComp) membranes as an alternative to traditional synthetic membranes. It focuses on their materials, fabrication, and functionalization techniques while exploring challenges and proposing methods for resourceful utilization. Renowned for their abundance and renewable nature, lignocellulosic materials consist of cellulose, hemicellulose, and lignin. Various applications can benefit from their antibacterial properties,… More > Graphic Abstract

    Lignocellulosic Biocomposite Membranes for Air Filtration and Environmental Protection: A Review

  • Open Access

    REVIEW

    A Greener Future: Carbon Nanomaterials from Lignocellulose

    Hebat-Allah S. Tohamy*, Mohamed El-Sakhawy, Samir Kamel

    Journal of Renewable Materials, Vol.13, No.1, pp. 21-47, 2025, DOI:10.32604/jrm.2024.058603 - 20 January 2025

    Abstract Lignocellulosic materials (LCMs), abundant biomass residues, pose significant environmental challenges when improperly disposed of. LCMs, such as sugarcane bagasse, rice straw, saw dust and agricultural residues, are abundant but often burned, contributing to air pollution and greenhouse gas emissions. This review explores the potential of transforming these materials into high-value carbon nanomaterials (CNMs). We explore the potential of transforming these materials into high-value CNMs. By employing techniques like carbonization and activation, LCMs can be converted into various CNMs, including carbon nanotubes (CNTs), graphene (G), graphene oxide (GO), carbon quantum dots (CQDs), nanodiamonds (NDs), fullerenes… More > Graphic Abstract

    A Greener Future: Carbon Nanomaterials from Lignocellulose

  • Open Access

    ARTICLE

    Mitigation of Detrimental Effects of Salinity on Sweet Pepper through Biochar-Based Fertilizers Derived from Date Palm Wastes

    Adil Mihoub1,*, Mohammed Mesnoua1, Nabil Touzout2, Reguia Zeguerrou1, Nourelislm Siabdallah1, Chawqi Benchikh1, Saliha Benaoune1, Aftab Jamal3, Domenico Ronga4, Jakub Černý5,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2993-3011, 2024, DOI:10.32604/phyton.2024.057536 - 30 November 2024

    Abstract Globally, salinity is a brutal environmental constraint that poses a major threat to agriculture worldwide, causing nutrient imbalances and oxidative stress, leading to reduced crop yields and quality. Date palm waste from the agro-industry is a major environmental problem, but its conversion to biochar for soil amendment could help alleviate the effects of salinity stress. Pepper is a commonly grown horticultural crop that is sensitive to salinity. That’s why the current experiment was conducted with the novel idea of exploring the potential use of biochar-based fertilizer derived from date palm waste as a mitigation strategy… More >

  • Open Access

    ARTICLE

    Extraction and Detailed Physico-Chemical Characterization of Lignocellulosic Fibers Derived from Lonchocarpus cyanescens

    Edja Florentin Assanvo1,*, Kanga Marius N’GATTA1, Kicoun Jean-Yves N’zi Touré1,2,3, Amenan Sylvie Konan4, David Boa4

    Journal of Polymer Materials, Vol.41, No.2, pp. 55-68, 2024, DOI:10.32604/jpm.2024.055397 - 09 August 2024

    Abstract The present study focused on extraction of Lonchocarpus cyanescens (L. cyanescens) fiber (LCF) and the physico-chemical properties of the obtained fiber. The fiber was extracted by manual and traditional rating methods, treated with sodium hydroxide, and characterized to determine its performance properties. The chemical composition of cellulose, hemicellulose, and lignin was determined according to the acid detergent, neutral detergent, and Klason methods, respectively. The results show significant quantities of cellulose (33%), hemicellulose (30%), and lignin (24%) in the studied fibers. LCF exhibited a porous multicellular and poly lamellate network structure (FE-SEM) with a crystallinity index of 56.5%. More >

  • Open Access

    ARTICLE

    Characteristics of Biopellets Manufactured from Various Lignocellulosic Feedstocks as Alternative Renewable Energy Sources

    Anggara Ridho Putra1, Apri Heri Iswanto1,*, Arif Nuryawan1, Saptadi Darmawan2, Elvara Windra Madyaratri2, Widya Fatriasari2, Lee Seng Hua3, Petar Antov4,*, Harisyah Manurung1, Ade Pera Amydha Sudrajat Herawati Pendi2

    Journal of Renewable Materials, Vol.12, No.6, pp. 1103-1123, 2024, DOI:10.32604/jrm.2024.051077 - 02 August 2024

    Abstract The increased valorization of renewable and cost-effective lignocellulosic feedstocks represents a viable, sustainable, and eco-friendly approach toward the production of biopellets as alternative energy sources. The aim of this research work was to investigate and evaluate the feasibility of using various lignocellulosic raw materials, i.e., raru (Cotylelobium melanoxylon), mangrove (Rhizophora spp.), sengon (Paraserianthes falcataria), kemenyan toba (Styrax sumatrana), oil palm (Elaeis guineensis), manau rattan (Calamus manan), and belangke bamboo (Gigantochloa pruriens) for manufacturing biopellets with different particle sizes. The raw materials used were tested for their moisture content, specific gravity, ash, cellulose, and lignin content. In addition, thermal analyses, i.e., calorific values,… More >

  • Open Access

    ARTICLE

    Activated Carbon from Nipa Palm Fronds (Nypa fruticans) with H3PO4 and KOH Activators as Fe Adsorbers

    Ninis Hadi Haryanti1,*, Eka Suarso1, Tetti N. Manik1, Suryajaya1, Nurlita Sari1, Darminto2

    Journal of Renewable Materials, Vol.12, No.2, pp. 203-214, 2024, DOI:10.32604/jrm.2023.043549 - 11 March 2024

    Abstract Nipa palm is one of the non-wood plants rich in lignocellulosic content. In this study, palm fronds were converted into activated carbon, and their physical, chemical, and morphological properties were characterized. The resulting activated carbon was then applied as an adsorbent of Fe metal in peat water. The carbonization process was carried out for 60 min, followed by sintering at 400°C for 5 h with a particle size of 200 mesh. KOH and H3PO4 were used in the chemical activation process for 24 h. KOH-activated carbon contained 6.13% of moisture, 4.55% of ash, 17.02% of volatile… More > Graphic Abstract

    Activated Carbon from Nipa Palm Fronds (<i>Nypa fruticans</i>) with H<sub>3</sub>PO<sub>4</sub> and KOH Activators as Fe Adsorbers

Displaying 1-10 on page 1 of 16. Per Page