Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (127)
  • Open Access

    ARTICLE

    Localization Based Evolutionary Routing (LOBER) for Efficient Aggregation in Wireless Multimedia Sensor Networks

    Ashwinth Janarthanan1,*, Dhananjay Kumar1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 895-912, 2019, DOI:10.32604/cmc.2019.06805

    Abstract Efficient aggregation in wireless sensor nodes helps reduce network traffic and reduce energy consumption. The objective of this work Localization Based Evolutionary Routing (LOBER) is to achieve global optimization for aggregation and WMSN lifetime. Improved localization is achieved by a novel Centroid Based Octant Localization (CBOL) technique considering an arbitrary hexagonal region. Geometric principles of hexagon are used to locate the unknown nodes in the centroid positions of partitioned regions. Flower pollination algorithm, a meta heuristic evolutionary algorithm that is extensively applied in solving real life, complex and nonlinear optimization problems in engineering and industry is modified as Enhanced Flower… More >

  • Open Access

    ARTICLE

    Leveraging Logical Anchor into Topology Optimization for Indoor Wireless Fingerprinting

    Lin Wang1,*, Huixiang Liu1, Wenyuan Liu1,2, Nan Jing1, Ahmad Adnan1, Chenshu Wu3

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 437-449, 2019, DOI:10.32604/cmc.2019.03814

    Abstract The indoor subarea localization has wide application space in dynamic hot zone identification, indoor layout optimization, store dynamic pricing and crowd flow trend prediction. The ubiquitous mobile devices provide the opportunity for wireless fingerprinting-based indoor localization services. However, there are two short board where the existing methods have been criticized. One is that a tagging approach requires a large number of professional surveys for wireless fingerprint construction, which weakens the scalability of the methods. The other is that the crowdsourcing-based methods encounter the cold boot problem in the system initial stage. To address these issues, the paper proposes a topology… More >

  • Open Access

    ARTICLE

    A Novel Multi-Hop Algorithm for Wireless Network with Unevenly Distributed Nodes

    Yu Liu1, Zhong Yang2, Xiaoyong Yan3, Guangchi Liu4, Bo Hu5,*

    CMC-Computers, Materials & Continua, Vol.58, No.1, pp. 79-100, 2019, DOI:10.32604/cmc.2019.03626

    Abstract Node location estimation is not only the promise of the wireless network for target recognition, monitoring, tracking and many other applications, but also one of the hot topics in wireless network research. In this paper, the localization algorithm for wireless network with unevenly distributed nodes is discussed, and a novel multi-hop localization algorithm based on Elastic Net is proposed. The proposed approach is formulated as a regression problem, which is solved by Elastic Net. Unlike other previous localization approaches, the proposed approach overcomes the shortcomings of traditional approaches assume that nodes are distributed in regular areas without holes or obstacles,… More >

  • Open Access

    ARTICLE

    Improved GNSS Cooperation Positioning Algorithm for Indoor Localization

    Taoyun Zhou1,2, Baowang Lian1, Siqing Yang2,*, Yi Zhang1, Yangyang Liu1,3

    CMC-Computers, Materials & Continua, Vol.56, No.2, pp. 225-245, 2018, DOI: 10.3970/cmc.2018.02671

    Abstract For situations such as indoor and underground parking lots in which satellite signals are obstructed, GNSS cooperative positioning can be used to achieve high-precision positioning with the assistance of cooperative nodes. Here we study the cooperative positioning of two static nodes, node 1 is placed on the roof of the building and the satellite observation is ideal, node 2 is placed on the indoor windowsill where the occlusion situation is more serious, we mainly study how to locate node 2 with the assistance of node 1. Firstly, the two cooperative nodes are located with pseudo-range single point positioning, and the… More >

  • Open Access

    ARTICLE

    Localization Algorithm of Indoor Wi-Fi Access Points Based on Signal Strength Relative Relationship and Region Division

    Wenyan Liu1, Xiangyang Luo1,*, Yimin Liu1, Jianqiang Liu2, Minghao Liu1, Yun Q. Shi3

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 71-93, 2018, DOI:10.3970/cmc.2018.055.071

    Abstract Precise localization techniques for indoor Wi-Fi access points (APs) have important application in the security inspection. However, due to the interference of environment factors such as multipath propagation and NLOS (Non-Line-of-Sight), the existing methods for localization indoor Wi-Fi access points based on RSS ranging tend to have lower accuracy as the RSS (Received Signal Strength) is difficult to accurately measure. Therefore, the localization algorithm of indoor Wi-Fi access points based on the signal strength relative relationship and region division is proposed in this paper. The algorithm hierarchically divide the room where the target Wi-Fi AP is located, on the region… More >

  • Open Access

    ARTICLE

    Localization in Time of Solutions for Thermoelastic Micropolar Materials with Voids

    Marin Marin1, Ravi P. Agarwal2, Mohamed Othman3

    CMC-Computers, Materials & Continua, Vol.40, No.1, pp. 35-48, 2014, DOI:10.3970/cmc.2014.040.035

    Abstract In this study we want to decide whether the decay of the solutions of the mixed initial boundary value problem in the context of thermoelasticiy of micropolar bodies with voids is sufficiently fast to guarantee that they vanish after a finite time. In fact, we prove that the effect of the micropolar structure in combination with the thermal and porous dissipation can not determine the thermomechanical deformations vanish after a finite time. More >

  • Open Access

    ARTICLE

    Thermo-Elastic Localization Relationships for Multi-Phase Composites

    Giacomo Landi1, Surya R. Kalidindi2

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 273-294, 2010, DOI:10.3970/cmc.2010.016.273

    Abstract In this paper, we present a computationally efficient multi-scale framework for predicting the local fields in the representative volume element of a multiphase material system subjected to thermo-mechanical loading conditions. This framework for localization relationships is a natural extension of our recent work on two-phase composites subjected to purely mechanical loading. In this novel approach, the localization relationships take on a simple structure expressed as a series sum, where each term in the series is a convolution product of local structure and the governing physics expressed in the form of influence coefficients. Another salient feature of this approach is its… More >

Displaying 121-130 on page 13 of 127. Per Page