Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,051)
  • Open Access

    ARTICLE

    Robust Sensor—Less PR Controller Design for 15-PUC Multilevel Inverter Topology with Low Voltage Stress for Renewable Energy Applications

    K. Naga Venkata Siva1, Damodhar Reddy2, P. Krishna Murthy3, Kiran Kumar Pulamolu4, M. Dharani5, T. Venkatakrishnamoorthy6,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.072982 - 27 December 2025

    Abstract Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components, particularly at elevated voltage levels. Addressing these shortcomings, this work presents a robust 15-level Packed U Cell (PUC) inverter topology designed for renewable energy and grid-connected applications. The proposed system integrates a sensor less proportional-resonant (PR) controller with an advanced carrier-based pulse width modulation scheme. This approach efficiently balances capacitor voltage, minimizes steady-state error, and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation. Additionally, More >

  • Open Access

    REVIEW

    Curtain Wall Systems as Climate-Adaptive Energy Infrastructures: A Critical Review of Their Role in Sustainable Building Performance

    Samira Rastbod1, Mehdi Jahangiri2,*, Behrang Moradi1, Haleh Nazari1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070089 - 27 December 2025

    Abstract Curtain wall systems have evolved from aesthetic façade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness. This review presents a comprehensive examination of curtain walls from an energy-engineering perspective, highlighting their structural typologies (Stick and Unitized), material configurations, and integration with smart technologies such as electrochromic glazing, parametric design algorithms, and Building Management Systems (BMS). The study explores the thermal, acoustic, and solar performance of curtain walls across various climatic zones, supported by comparative analyses and iconic case studies including Apple Park, Burj Khalifa, and Milad Tower. Key challenges—including… More > Graphic Abstract

    Curtain Wall Systems as Climate-Adaptive Energy Infrastructures: A Critical Review of Their Role in Sustainable Building Performance

  • Open Access

    ARTICLE

    Structural and Helix Reversal Defects of Carbon Nanosprings: A Molecular Dynamics Study

    Alexander V. Savin1,2, Elena A. Korznikova3,4, Sergey V. Dmitriev5,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072786 - 09 December 2025

    Abstract Due to their chiral structure, carbon nanosprings possess unique properties that are promising for nanotechnology applications. The structural transformations of carbon nanosprings in the form of spiral macromolecules derived from planar coronene and kekulene molecules (graphene helicoids and spiral nanoribbons) are analyzed using molecular dynamics simulations. The interatomic interactions are described by a force field including valence bonds, bond angles, torsional and dihedral angles, as well as van der Waals interactions. While the tension/compression of such nanosprings has been analyzed in the literature, this study investigates other modes of deformation, including bending and twisting. Depending… More >

  • Open Access

    ARTICLE

    MultiAgent-CoT: A Multi-Agent Chain-of-Thought Reasoning Model for Robust Multimodal Dialogue Understanding

    Ans D. Alghamdi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-35, 2026, DOI:10.32604/cmc.2025.071210 - 09 December 2025

    Abstract Multimodal dialogue systems often fail to maintain coherent reasoning over extended conversations and suffer from hallucination due to limited context modeling capabilities. Current approaches struggle with cross-modal alignment, temporal consistency, and robust handling of noisy or incomplete inputs across multiple modalities. We propose MultiAgent-Chain of Thought (CoT), a novel multi-agent chain-of-thought reasoning framework where specialized agents for text, vision, and speech modalities collaboratively construct shared reasoning traces through inter-agent message passing and consensus voting mechanisms. Our architecture incorporates self-reflection modules, conflict resolution protocols, and dynamic rationale alignment to enhance consistency, factual accuracy, and user engagement. More >

  • Open Access

    ARTICLE

    Log-Based Anomaly Detection of System Logs Using Graph Neural Network

    Eman Alsalmi, Abeer Alhuzali*, Areej Alhothali

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071012 - 09 December 2025

    Abstract Log anomaly detection is essential for maintaining the reliability and security of large-scale networked systems. Most traditional techniques rely on log parsing in the reprocessing stage and utilize handcrafted features that limit their adaptability across various systems. In this study, we propose a hybrid model, BertGCN, that integrates BERT-based contextual embedding with Graph Convolutional Networks (GCNs) to identify anomalies in raw system logs, thereby eliminating the need for log parsing. The BERT module captures semantic representations of log messages, while the GCN models the structural relationships among log entries through a text-based graph. This combination More >

  • Open Access

    ARTICLE

    Optimizing Resource Allocation in Blockchain Networks Using Neural Genetic Algorithm

    Malvinder Singh Bali1, Weiwei Jiang2,*, Saurav Verma3, Kanwalpreet Kour4, Ashwini Rao3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070866 - 09 December 2025

    Abstract In recent years, Blockchain Technology has become a paradigm shift, providing Transparent, Secure, and Decentralized platforms for diverse applications, ranging from Cryptocurrency to supply chain management. Nevertheless, the optimization of blockchain networks remains a critical challenge due to persistent issues such as latency, scalability, and energy consumption. This study proposes an innovative approach to Blockchain network optimization, drawing inspiration from principles of biological evolution and natural selection through evolutionary algorithms. Specifically, we explore the application of genetic algorithms, particle swarm optimization, and related evolutionary techniques to enhance the performance of blockchain networks. The proposed methodologies More >

  • Open Access

    ARTICLE

    Blockchain-Assisted Improved Cryptographic Privacy-Preserving FL Model with Consensus Algorithm for ORAN

    Raghavendra Kulkarni1, Venkata Satya Suresh kumar Kondeti1, Binu Sudhakaran Pillai2, Surendran Rajendran3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069835 - 10 November 2025

    Abstract The next-generation RAN, known as Open Radio Access Network (ORAN), allows for several advantages, including cost-effectiveness, network flexibility, and interoperability. Now ORAN applications, utilising machine learning (ML) and artificial intelligence (AI) techniques, have become standard practice. The need for Federated Learning (FL) for ML model training in ORAN environments is heightened by the modularised structure of the ORAN architecture and the shortcomings of conventional ML techniques. However, the traditional plaintext model update sharing of FL in multi-BS contexts is susceptible to privacy violations such as deep-leakage gradient assaults and inference. Therefore, this research presents a… More >

  • Open Access

    ARTICLE

    Automatic Detection of Health-Related Rumors: A Dual-Graph Collaborative Reasoning Framework Based on Causal Logic and Knowledge Graph

    Ning Wang, Haoran Lyu*, Yuchen Fu

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-31, 2026, DOI:10.32604/cmc.2025.068784 - 10 November 2025

    Abstract With the widespread use of social media, the propagation of health-related rumors has become a significant public health threat. Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures, with only a few recent approaches attempting causal inference; however, these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors. In this study, we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts, holding significant potential for health rumor detection. To this end, we… More >

  • Open Access

    ARTICLE

    A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization

    Zhao Li1, Hongyu Xu1,*, Shuai Zhang2, Jintao Cui1, Xiaofeng Liu1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068763 - 10 November 2025

    Abstract The moving morphable component (MMC) topology optimization method, as a typical explicit topology optimization method, has been widely concerned. In the MMC topology optimization framework, the surrogate material model is mainly used for finite element analysis at present, and the effectiveness of the surrogate material model has been fully confirmed. However, there are some accuracy problems when dealing with boundary elements using the surrogate material model, which will affect the topology optimization results. In this study, a boundary element reconstruction (BER) model is proposed based on the surrogate material model under the MMC topology optimization… More >

  • Open Access

    ARTICLE

    LLM-KE: An Ontology-Aware LLM Methodology for Military Domain Knowledge Extraction

    Yu Tao1, Ruopeng Yang1,2, Yongqi Wen1,*, Yihao Zhong1, Kaige Jiao1, Xiaolei Gu1,2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-17, 2026, DOI:10.32604/cmc.2025.068670 - 10 November 2025

    Abstract Since Google introduced the concept of Knowledge Graphs (KGs) in 2012, their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition, extraction, representation, modeling, fusion, computation, and storage. Within this framework, knowledge extraction, as the core component, directly determines KG quality. In military domains, traditional manual curation models face efficiency constraints due to data fragmentation, complex knowledge architectures, and confidentiality protocols. Meanwhile, crowdsourced ontology construction approaches from general domains prove non-transferable, while human-crafted ontologies struggle with generalization deficiencies. To address these challenges, this study proposes an Ontology-Aware LLM Methodology for Military Domain More >

Displaying 1-10 on page 1 of 3051. Per Page