Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access


    Accumulation Characteristics of Protein and Non-Protein Components and Their Correlations with Protein Concentration in Rice Grains

    Xiaoli Zhang1,2,#, Xiaohong Yin2,3,#, Jiana Chen3,#, Fangbo Cao3, Yu Liu3, Zhengwu Xiao3, Liqin Hu3, Guanghui Chen3, Tianfeng Liang1,2,*, Min Huang3,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.4, pp. 1285-1292, 2021, DOI:10.32604/phyton.2021.014778

    Abstract Protein in rice grains is an important source of nutrition for rice consumers. This study mainly aimed to identify the critical factors that determine grain protein concentration in rice. Accumulation parameters, including mean accumulation rate (Rmean) and active accumulation duration (Dactive), for protein and non-protein components and their correlations with protein concentration in rice grains were investigated in field experiments conducted over two years with six rice cultivars. Results showed that grain protein concentration ranged from 9.6% to 11.9% across cultivars and years. Accumulation processes of protein and non-protein components were well fitted by the logistic More >

  • Open Access


    A Rock-fall Early Warning System Based on Logistic Regression Model

    Mohammed Abaker1,*, Abdelzahir Abdelmaboud2, Magdi Osman3, Mohammed Alghobiri4, Ahmed Abdelmotlab4

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 843-856, 2021, DOI:10.32604/iasc.2021.017714

    Abstract The rock-fall is a natural hazard that results in many economic damages and human losses annually, and thus proactive policies to prevent rock-fall hazard are needed. Such policies require predicting the rock-fall occurrence and deciding to alert the road users at the appropriate time. Thus, this study develops a rock-fall early warning system based on logistic regression model. In this system, the logistic regression model is used to predict the rock-fall occurrence. The decision-making algorithm is used to classify the hazard levels and delivers early warning action. This study adopts two criteria to evaluate the More >

  • Open Access


    Machine Learning Empowered Security Management and Quality of Service Provision in SDN-NFV Environment

    Shumaila Shahzadi1, Fahad Ahmad1,*, Asma Basharat1, Madallah Alruwaili2, Saad Alanazi2, Mamoona Humayun2, Muhammad Rizwan1, Shahid Naseem3

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2723-2749, 2021, DOI:10.32604/cmc.2021.014594

    Abstract With the rising demand for data access, network service providers face the challenge of growing their capital and operating costs while at the same time enhancing network capacity and meeting the increased demand for access. To increase efficacy of Software Defined Network (SDN) and Network Function Virtualization (NFV) framework, we need to eradicate network security configuration errors that may create vulnerabilities to affect overall efficiency, reduce network performance, and increase maintenance cost. The existing frameworks lack in security, and computer systems face few abnormalities, which prompts the need for different recognition and mitigation methods to… More >

  • Open Access


    Click through Rate Effectiveness Prediction on Mobile Ads Using Extreme Gradient Boosting

    AlAli Moneera, AlQahtani Maram, AlJuried Azizah, Taghareed AlOnizan, Dalia Alboqaytah, Nida Aslam*, Irfan Ullah Khan

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1681-1696, 2021, DOI:10.32604/cmc.2020.013466

    Abstract Online advertisements have a significant influence over the success or failure of your business. Therefore, it is important to somehow measure the impact of your advertisement before uploading it online, and this is can be done by calculating the Click Through Rate (CTR). Unfortunately, this method is not eco-friendly, since you have to gather the clicks from users then compute the CTR. This is where CTR prediction come in handy. Advertisement CTR prediction relies on the users’ log regarding click information data. Accurate prediction of CTR is a challenging and critical process for e-advertising platforms… More >

  • Open Access


    Performance Estimation of Machine Learning Algorithms in the Factor Analysis of COVID-19 Dataset

    Ashutosh Kumar Dubey1,*, Sushil Narang1, Abhishek Kumar1, Satya Murthy Sasubilli2, Vicente García-Díaz3

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1921-1936, 2021, DOI:10.32604/cmc.2020.012151

    Abstract Novel Coronavirus Disease (COVID-19) is a communicable disease that originated during December 2019, when China officially informed the World Health Organization (WHO) regarding the constellation of cases of the disease in the city of Wuhan. Subsequently, the disease started spreading to the rest of the world. Until this point in time, no specific vaccine or medicine is available for the prevention and cure of the disease. Several research works are being carried out in the fields of medicinal and pharmaceutical sciences aided by data analytics and machine learning in the direction of treatment and early… More >

  • Open Access


    Roman Urdu News Headline Classification Empowered with Machine Learning

    Rizwan Ali Naqvi1, Muhammad Adnan Khan2, *, Nauman Malik2, Shazia Saqib2, Tahir Alyas2, Dildar Hussain3

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1221-1236, 2020, DOI:10.32604/cmc.2020.011686

    Abstract Roman Urdu has been used for text messaging over the Internet for years especially in Indo-Pak Subcontinent. Persons from the subcontinent may speak the same Urdu language but they might be using different scripts for writing. The communication using the Roman characters, which are used in the script of Urdu language on social media, is now considered the most typical standard of communication in an Indian landmass that makes it an expensive information supply. English Text classification is a solved problem but there have been only a few efforts to examine the rich information supply… More >

  • Open Access


    3D Bounding Box Proposal for on-Street Parking Space Status Sensing in Real World Conditions

    Yaocheng Zheng1, Weiwei Zhang1,*, Xuncheng Wu1, Bo Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 559-576, 2019, DOI:10.32604/cmes.2019.05684

    Abstract Vision-based technologies have been extensively applied for on-street parking space sensing, aiming at providing timely and accurate information for drivers and improving daily travel convenience. However, it faces great challenges as a partial visualization regularly occurs owing to occlusion from static or dynamic objects or a limited perspective of camera. This paper presents an imagery-based framework to infer parking space status by generating 3D bounding box of the vehicle. A specially designed convolutional neural network based on ResNet and feature pyramid network is proposed to overcome challenges from partial visualization and occlusion. It predicts 3D… More >

  • Open Access


    Machine Learning Based Resource Allocation of Cloud Computing in Auction

    Jixian Zhang1, Ning Xie1, Xuejie Zhang1, Kun Yue1, Weidong Li2,*, Deepesh Kumar3

    CMC-Computers, Materials & Continua, Vol.56, No.1, pp. 123-135, 2018, DOI:10.3970/cmc.2018.03728

    Abstract Resource allocation in auctions is a challenging problem for cloud computing. However, the resource allocation problem is NP-hard and cannot be solved in polynomial time. The existing studies mainly use approximate algorithms such as PTAS or heuristic algorithms to determine a feasible solution; however, these algorithms have the disadvantages of low computational efficiency or low allocate accuracy. In this paper, we use the classification of machine learning to model and analyze the multi-dimensional cloud resource allocation problem and propose two resource allocation prediction algorithms based on linear and logistic regressions. By learning a small-scale training More >

  • Open Access


    An Ensemble Based Hand Vein Pattern Authentication System

    M. Rajalakshmi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.2, pp. 209-220, 2018, DOI:10.3970/cmes.2018.114.209

    Abstract Amongst several biometric traits, Vein pattern biometric has drawn much attention among researchers and diverse users. It gains its importance due to its difficulty in reproduction and inherent security advantages. Many research papers have dealt with the topic of new generation biometric solutions such as iris and vein biometrics. However, most implementations have been based on small datasets due to the difficulties in obtaining samples. In this paper, a deeper study has been conducted on previously suggested methods based on Convolutional Neural Networks (CNN) using a larger dataset. Also, modifications are suggested for implementation using More >

  • Open Access


    Improved Logistic Regression Algorithm Based on Kernel Density Estimation for Multi-Classification with Non-Equilibrium Samples

    Yang Yu1, Zeyu Xiong1,*, Yueshan Xiong1, Weizi Li2

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 103-118, 2019, DOI:10.32604/cmc.2019.05154

    Abstract Logistic regression is often used to solve linear binary classification problems such as machine vision, speech recognition, and handwriting recognition. However, it usually fails to solve certain nonlinear multi-classification problem, such as problem with non-equilibrium samples. Many scholars have proposed some methods, such as neural network, least square support vector machine, AdaBoost meta-algorithm, etc. These methods essentially belong to machine learning categories. In this work, based on the probability theory and statistical principle, we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification. We have compared our approach with More >

Displaying 21-30 on page 3 of 30. Per Page