Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (131)
  • Open Access

    ARTICLE

    Silencing of the long non-coding RNA LINC00265 triggers autophagy and apoptosis in lung cancer by reducing protein stability of SIN3A oncogene

    XIAOBI HUANG1,#, CHUNYUAN CHEN2, YONGYANG CHEN1,#, HONGLIAN ZHOU1, YONGHUA CHEN1, ZHONG HUANG1, YULIU XIE1, BAIYANG LIU1, YUDONG GUO1, ZHIXIONG YANG1, GUANGHUA CHEN3,*, WENMEI SU1,4,*

    Oncology Research, Vol.32, No.7, pp. 1185-1195, 2024, DOI:10.32604/or.2023.030771

    Abstract Background: Long non-coding RNAs are important regulators in cancer biology and function either as tumor suppressors or as oncogenes. Their dysregulation has been closely associated with tumorigenesis. LINC00265 is upregulated in lung adenocarcinoma and is a prognostic biomarker of this cancer. However, the mechanism underlying its function in cancer progression remains poorly understood. Methods: Here, the regulatory role of LINC00265 in lung adenocarcinoma was examined using lung cancer cell lines, clinical samples, and xenografts. Results: We found that high levels of LINC00265 expression were associated with shorter overall survival rate of patients, whereas knockdown of LINC00265 inhibited proliferation… More >

  • Open Access

    ARTICLE

    Empowering Diagnosis: Cutting-Edge Segmentation and Classification in Lung Cancer Analysis

    Iftikhar Naseer1,2, Tehreem Masood1,2, Sheeraz Akram3,*, Zulfiqar Ali4, Awais Ahmad3, Shafiq Ur Rehman3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4963-4977, 2024, DOI:10.32604/cmc.2024.050204

    Abstract Lung cancer is a leading cause of global mortality rates. Early detection of pulmonary tumors can significantly enhance the survival rate of patients. Recently, various Computer-Aided Diagnostic (CAD) methods have been developed to enhance the detection of pulmonary nodules with high accuracy. Nevertheless, the existing methodologies cannot obtain a high level of specificity and sensitivity. The present study introduces a novel model for Lung Cancer Segmentation and Classification (LCSC), which incorporates two improved architectures, namely the improved U-Net architecture and the improved AlexNet architecture. The LCSC model comprises two distinct stages. The first stage involves… More >

  • Open Access

    ARTICLE

    Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm

    Mutasem K. Alsmadi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5175-5200, 2024, DOI:10.32604/cmc.2024.044065

    Abstract Lung cancer is among the most frequent cancers in the world, with over one million deaths per year. Classification is required for lung cancer diagnosis and therapy to be effective, accurate, and reliable. Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner. Machine Learning (ML) has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique. Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification. Normally,… More >

  • Open Access

    ARTICLE WITHDRAWN

    [ARTICLE WITHDRAWN] MicroRNA-223 Promotes Tumor Progression in Lung Cancer A549 Cells via Activation of the NF-κB Signaling Pathway

    Huang Li, Li Fang, Deng Pengbo, Hu Chengping

    Oncology Research, Vol.24, No.6, pp. 405-413, 2016, DOI:10.3727/096504016X14685034103437

    Abstract THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN NOVEMBER 2020 More >

  • Open Access

    ARTICLE WITHDRAWN

    [ARTICLE WITHDRAWN] MicroRNA-16-1 Inhibits Tumor Cell Proliferation and Induces Apoptosis in A549 Non-Small Cell Lung Carcinoma Cells

    Wang Weihua, Chen Jie, Dai Jinhua, Zhang Burong, Wang Feng, Sun Yizhe

    Oncology Research, Vol.24, No.5, pp. 345-351, 2016, DOI:10.3727/096504016X14685034103194

    Abstract THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN NOVEMBER 2020 More >

  • Open Access

    ARTICLE

    Knockdown of Long Noncoding RNA uc.338 by siRNA Inhibits Cellular Migration and Invasion in Human Lung Cancer Cells

    Xuexin Gao*, Xuezhen Gao, Chao Li*, Yukun Zhang*, Lei Gao

    Oncology Research, Vol.24, No.5, pp. 337-343, 2016, DOI:10.3727/096504016X14666990347671

    Abstract Lung cancer remains a critical health concern worldwide. Long noncoding RNAs with ultraconserved elements have recently been implicated in human tumorigenesis. The present study investigated the role of ultraconserved element 338 (uc.338) in the regulation of cell proliferation and metastasis in human lung cancer. Our data showed that the expression of uc.338 in lung cancer was remarkably increased in vivo and in vitro. Depletion of uc.338 with specific siRNA interference retarded the cell proliferative rate in lung cancer cell lines NCI-H929 and H1688. Furthermore, knockdown of uc.338 caused cell cycle arrest in the G0/G1 phase in More >

  • Open Access

    ARTICLE

    Anexelekto (AXL) Increases Resistance to EGFR-TKI and Activation of AKT and ERK1/2 in Non-Small Cell Lung Cancer Cells

    Yaqiong Tian*1, Zengli Zhang†1, Liyun Miao*, Zhimin Yang, Jie Yang*, Yinhua Wang§, Danwen Qian, Hourong Cai*, Yongsheng Wang*

    Oncology Research, Vol.24, No.5, pp. 295-303, 2016, DOI:10.3727/096504016X14648701447814

    Abstract Recently, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have revolutionized nonsmall cell lung cancer (NSCLC) treatment. However, resistance remains a major obstacle. Anexelekto (AXL) is a member of receptor tyrosine kinases (RTKs) and shares the same downstream signaling pathways with EGFR, such as PI3K/AKT and MAPK/ERK. AXL overexpression in resistant tumors has been implicated in many previous studies in vitro and in vivo. In this study, we further examined whether expression of AXL and its downstream targets increased in gefitinib-resistant PC9 cells (PC9GR). In addition, we hypothesize that knocking down AXL in PC9GR and… More >

  • Open Access

    ARTICLE

    Knockdown of CUL4B Suppresses the Proliferation and Invasion in Non-Small Cell Lung Cancer Cells

    Xuguang Wang*, Zhe Chen

    Oncology Research, Vol.24, No.4, pp. 271-277, 2016, DOI:10.3727/096504016X14666990347473

    Abstract Cullin 4B (CUL4B), a scaffold protein that assembles CRL4B ubiquitin ligase complexes, was found to be overexpressed in many types of tumors. However, the expression pattern and role of CUL4B in non-small cell lung cancer (NSCLC) remain largely unknown. Therefore, in the present study, we investigated the role of CUL4B in NSCLC, and the underlying mechanism was also explored. Our results showed that CUL4B was highly expressed in NSCLC cell lines. Silencing CUL4B obviously inhibited proliferation and migration/invasion of NSCLC cells, and it also suppressed the epithelial–mesenchymal transition (EMT) progress in NSCLC cells. Furthermore, knockdown More >

  • Open Access

    ARTICLE

    Suppression of Ubiquitin-Specific Peptidase 17 (USP17) Inhibits Tumorigenesis and Invasion in Non-Small Cell Lung Cancer Cells

    Shengchao Zhang, Jun Yuan, Ruheng Zheng

    Oncology Research, Vol.24, No.4, pp. 263-269, 2016, DOI:10.3727/096504016X14666990347392

    Abstract Recently, deubiquitinating enzymes (DUBs) are emerging as new regulators in cancer progression. However, understanding of the involvement of DUBs in non-small cell lung cancer (NSCLC) is just beginning. In this study, we investigated the expression and biological function of ubiquitin-specific peptidase 17 (USP17) in NSCLC progression in vitro and in vivo. We found that the expression of USP17 was higher than in a normal control. We further efficiently depleted USP17 expression in two different NSCLC cells, A549 and H1299. The anchorage-independent growth ability of these cells, estimated by soft agar colony formation assay, was significantly More >

  • Open Access

    ARTICLE

    Knockdown of Upregulated Gene 11 (URG11) Inhibits Proliferation, Invasion, and b-Catenin Expression in Non-Small Cell Lung Cancer Cells

    Zhe-liang Liu*, Jiao Wu, Lin-xian Wang, Jin-feng Yang, Gao-ming Xiao*, Hui-ping Sun, Yue-jun Chen*

    Oncology Research, Vol.24, No.3, pp. 197-204, 2016, DOI:10.3727/096504016X14648701447850

    Abstract Upregulated gene 11 (URG11), a new gene upregulated by hepatitis B virus X protein, was found to be involved in the development and progression of several tumors. However, the role of URG11 in human non-small cell lung cancer (NSCLC) has not yet been determined. Therefore, the aim of the present study was to explore the role of URG11 in human NSCLC. Our results found that URG11 was highly expressed in human NSCLC tissues compared with matched normal lung tissues, and higher levels were found in NSCLC cell lines in comparison to the normal lung cell More >

Displaying 1-10 on page 1 of 131. Per Page