Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Performance Evaluation of Machine Learning Algorithms in Reduced Dimensional Spaces

    Kaveh Heidary1,*, Venkata Atluri1, John Bland2

    Journal of Cyber Security, Vol.6, pp. 69-87, 2024, DOI:10.32604/jcs.2024.051196 - 28 August 2024

    Abstract This paper investigates the impact of reducing feature-vector dimensionality on the performance of machine learning (ML) models. Dimensionality reduction and feature selection techniques can improve computational efficiency, accuracy, robustness, transparency, and interpretability of ML models. In high-dimensional data, where features outnumber training instances, redundant or irrelevant features introduce noise, hindering model generalization and accuracy. This study explores the effects of dimensionality reduction methods on binary classifier performance using network traffic data for cybersecurity applications. The paper examines how dimensionality reduction techniques influence classifier operation and performance across diverse performance metrics for seven ML models. Four… More >

  • Open Access

    ARTICLE

    Detection of Real-Time Distributed Denial-of-Service (DDoS) Attacks on Internet of Things (IoT) Networks Using Machine Learning Algorithms

    Zaed Mahdi1,*, Nada Abdalhussien2, Naba Mahmood1, Rana Zaki3,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2139-2159, 2024, DOI:10.32604/cmc.2024.053542 - 15 August 2024

    Abstract The primary concern of modern technology is cyber attacks targeting the Internet of Things. As it is one of the most widely used networks today and vulnerable to attacks. Real-time threats pose with modern cyber attacks that pose a great danger to the Internet of Things (IoT) networks, as devices can be monitored or service isolated from them and affect users in one way or another. Securing Internet of Things networks is an important matter, as it requires the use of modern technologies and methods, and real and up-to-date data to design and train systems… More >

  • Open Access

    REVIEW

    A Systematic Review of Computer Vision Techniques for Quality Control in End-of-Line Visual Inspection of Antenna Parts

    Zia Ullah1,2,*, Lin Qi1, E. J. Solteiro Pires2, Arsénio Reis2, Ricardo Rodrigues Nunes2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2387-2421, 2024, DOI:10.32604/cmc.2024.047572 - 15 August 2024

    Abstract The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity. Antenna defects, ranging from manufacturing imperfections to environmental wear, pose significant challenges to the reliability and performance of communication systems. This review paper navigates the landscape of antenna defect detection, emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection. This review paper serves as a valuable resource for researchers, engineers, and practitioners engaged in the design and maintenance of communication systems. The insights presented here pave the way… More >

  • Open Access

    ARTICLE

    Phishing Attacks Detection Using Ensemble Machine Learning Algorithms

    Nisreen Innab1, Ahmed Abdelgader Fadol Osman2, Mohammed Awad Mohammed Ataelfadiel2, Marwan Abu-Zanona3,*, Bassam Mohammad Elzaghmouri4, Farah H. Zawaideh5, Mouiad Fadeil Alawneh6

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1325-1345, 2024, DOI:10.32604/cmc.2024.051778 - 18 July 2024

    Abstract Phishing, an Internet fraud where individuals are deceived into revealing critical personal and account information, poses a significant risk to both consumers and web-based institutions. Data indicates a persistent rise in phishing attacks. Moreover, these fraudulent schemes are progressively becoming more intricate, thereby rendering them more challenging to identify. Hence, it is imperative to utilize sophisticated algorithms to address this issue. Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors. Machine learning (ML) approaches can identify common characteristics in most phishing assaults. In this paper, we propose an ensemble approach… More >

  • Open Access

    ARTICLE

    Developing a Model for Parkinson’s Disease Detection Using Machine Learning Algorithms

    Naif Al Mudawi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4945-4962, 2024, DOI:10.32604/cmc.2024.048967 - 20 June 2024

    Abstract Parkinson’s disease (PD) is a chronic neurological condition that progresses over time. People start to have trouble speaking, writing, walking, or performing other basic skills as dopamine-generating neurons in some brain regions are injured or die. The patient’s symptoms become more severe due to the worsening of their signs over time. In this study, we applied state-of-the-art machine learning algorithms to diagnose Parkinson’s disease and identify related risk factors. The research worked on the publicly available dataset on PD, and the dataset consists of a set of significant characteristics of PD. We aim to apply… More >

  • Open Access

    ARTICLE

    Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms

    Maie Aboghazalah1,*, Passent El-kafrawy2, Abdelmoty M. Ahmed3, Rasha Elnemr5, Belgacem Bouallegue3, Ayman El-sayed4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3855-3875, 2024, DOI:10.32604/cmc.2023.039936 - 20 June 2024

    Abstract Heart monitoring improves life quality. Electrocardiograms (ECGs or EKGs) detect heart irregularities. Machine learning algorithms can create a few ECG diagnosis processing methods. The first method uses raw ECG and time-series data. The second method classifies the ECG by patient experience. The third technique translates ECG impulses into Q waves, R waves and S waves (QRS) features using richer information. Because ECG signals vary naturally between humans and activities, we will combine the three feature selection methods to improve classification accuracy and diagnosis. Classifications using all three approaches have not been examined till now. Several More >

  • Open Access

    REVIEW

    A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT

    Yifan Liu1, Shancang Li1,*, Xinheng Wang2, Li Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1233-1261, 2024, DOI:10.32604/cmes.2024.046473 - 20 May 2024

    Abstract The Industrial Internet of Things (IIoT) has brought numerous benefits, such as improved efficiency, smart analytics, and increased automation. However, it also exposes connected devices, users, applications, and data generated to cyber security threats that need to be addressed. This work investigates hybrid cyber threats (HCTs), which are now working on an entirely new level with the increasingly adopted IIoT. This work focuses on emerging methods to model, detect, and defend against hybrid cyber attacks using machine learning (ML) techniques. Specifically, a novel ML-based HCT modelling and analysis framework was proposed, in which regularisation and Random Forest were More >

  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189 - 26 March 2024

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing… More >

  • Open Access

    ARTICLE

    An Online Fake Review Detection Approach Using Famous Machine Learning Algorithms

    Asma Hassan Alshehri*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2767-2786, 2024, DOI:10.32604/cmc.2023.046838 - 27 February 2024

    Abstract Online review platforms are becoming increasingly popular, encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services. Using Sybil accounts, bot farms, and real account purchases, immoral actors demonize rivals and advertise their goods. Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years. The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones. This paper adopts a semi-supervised machine learning method to detect fake reviews on any website, More >

  • Open Access

    ARTICLE

    A Work Review on Clinical Laboratory Data Utilizing Machine Learning Use-Case Methodology

    Uma Ramasamy*, Sundar Santhoshkumar

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 1-14, 2024, DOI:10.32604/jimh.2023.046995 - 10 January 2024

    Abstract More than 140 autoimmune diseases have distinct autoantibodies and symptoms, and it makes it challenging to construct an appropriate model using Machine Learning (ML) for autoimmune disease. Arthritis-related autoimmunity requires special attention. Although many conventional biomarkers for arthritis have been established, more biomarkers of arthritis autoimmune diseases remain to be identified. This review focuses on the research conducted using data obtained from clinical laboratory testing of real-time arthritis patients. The collected data is labelled the Arthritis Profile Data (APD) dataset. The APD dataset is the retrospective data with many missing values. We undertook a comprehensive… More >

Displaying 1-10 on page 1 of 46. Per Page