Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (403)
  • Open Access

    ARTICLE

    SCADA Data-Based Support Vector Machine for False Alarm Identification for Wind Turbine Management

    Ana María Peco Chacón, Isaac Segovia Ramírez, Fausto Pedro García Márquez*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2595-2608, 2023, DOI:10.32604/iasc.2023.037277

    Abstract Maintenance operations have a critical influence on power generation by wind turbines (WT). Advanced algorithms must analyze large volume of data from condition monitoring systems (CMS) to determine the actual working conditions and avoid false alarms. This paper proposes different support vector machine (SVM) algorithms for the prediction and detection of false alarms. K-Fold cross-validation (CV) is applied to evaluate the classification reliability of these algorithms. Supervisory Control and Data Acquisition (SCADA) data from an operating WT are applied to test the proposed approach. The results from the quadratic SVM showed an accuracy rate of More >

  • Open Access

    ARTICLE

    An Overview of Seismic Risk Management for Italian Architectural Heritage

    Lucio Nobile*

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 353-368, 2023, DOI:10.32604/sdhm.2023.028247

    Abstract The frequent occurrence of seismic events in Italy poses a strategic problem that involves either the culture of preservation of historical heritage or the civil protection action aimed to reduce the risk to people and goods (buildings, bridges, dams, slopes, etc.). Most of the Italian architectural heritage is vulnerable to earthquakes, identifying the vulnerability as the inherent predisposition of the masonry building to suffer damage and collapse during an earthquake. In fact, the structural concept prevailing in these ancient masonry buildings is aimed at ensuring prevalent resistance to vertical gravity loads. Rarely do these ancient… More >

  • Open Access

    ARTICLE

    Explainable Artificial Intelligence-Based Model Drift Detection Applicable to Unsupervised Environments

    Yongsoo Lee, Yeeun Lee, Eungyu Lee, Taejin Lee*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1701-1719, 2023, DOI:10.32604/cmc.2023.040235

    Abstract Cybersecurity increasingly relies on machine learning (ML) models to respond to and detect attacks. However, the rapidly changing data environment makes model life-cycle management after deployment essential. Real-time detection of drift signals from various threats is fundamental for effectively managing deployed models. However, detecting drift in unsupervised environments can be challenging. This study introduces a novel approach leveraging Shapley additive explanations (SHAP), a widely recognized explainability technique in ML, to address drift detection in unsupervised settings. The proposed method incorporates a range of plots and statistical techniques to enhance drift detection reliability and introduces a… More >

  • Open Access

    ARTICLE

    Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning

    Ilyоs Abdullaev1, Natalia Prodanova2, K. Aruna Bhaskar3, E. Laxmi Lydia4, Seifedine Kadry5,6,7, Jungeun Kim8,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1463-1477, 2023, DOI:10.32604/cmc.2023.038417

    Abstract Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consider a mobile edge computing (MEC) network in multiple regions. They comprise N MDs and many access points, in which every MD has M independent real-time tasks. This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique addresses the resource management issue More >

  • Open Access

    ARTICLE

    Stochastic Programming for Hub Energy Management Considering Uncertainty Using Two-Point Estimate Method and Optimization Algorithm

    Ali S. Alghamdi1, Mohana Alanazi2, Abdulaziz Alanazi3, Yazeed Qasaymeh1,*, Muhammad Zubair1,4, Ahmed Bilal Awan5, M. G. B. Ashiq6

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2163-2192, 2023, DOI:10.32604/cmes.2023.029453

    Abstract To maximize energy profit with the participation of electricity, natural gas, and district heating networks in the day-ahead market, stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources, has been carried out. This has been done using a new meta-heuristic algorithm, improved artificial rabbits optimization (IARO). In this study, the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method (TPEM). The IARO algorithm is applied to calculate the best capacity of hub energy equipment, such as solar and wind renewable energy sources, combined heat… More >

  • Open Access

    ARTICLE

    Real Time Vehicle Status Monitoring under Moving Conditions Using a Low Power IoT System

    M. Vlachos1,*, R. Lopardo2, A. Amditis1

    Journal on Internet of Things, Vol.4, No.4, pp. 235-261, 2022, DOI:10.32604/jiot.2022.040820

    Abstract In the era of the Internet of Things (IoT), the ever-increasing number of devices connected to the IoT networks also increases the energy consumption on the edge. This is prohibitive since the devices living on the edge are generally resource constrained devices in terms of energy consumption and computational power. Thus, trying to tackle this issue, in this paper, a fully automated end-to-end IoT system for real time monitoring of the status of a moving vehicle is proposed. The IoT system consists mainly of three components: (1) the ultra-low power consumption Wireless Sensor Node (WSN),… More >

  • Open Access

    ARTICLE

    The Management of Mental Health, and Service Networks in Italy

    Silvia Carbone*

    International Journal of Mental Health Promotion, Vol.25, No.8, pp. 927-935, 2023, DOI:10.32604/ijmhp.2023.027784

    Abstract Madness has attracted and frightened for centuries, and talking about this means discussing how this diversity was built and managed in different social contexts and historical periods. Not all societies have had, and still have, the same relationship with madness. It is only with the affirmation of the Modern State, and of Capitalism, that the idea of “normality” indispensable to be able to conceive diversity as something dangerously distant and different from the norm takes over. In our post-modern society, people with mental illness in Italy can resort to specialists and social-health services. But the… More > Graphic Abstract

    The Management of Mental Health, and Service Networks in Italy

  • Open Access

    ARTICLE

    COMPUTATIONAL FLUID DYNAMICS SIMULATION OF THE THERMAL UNIFORMITY IN CATALYTIC MICRO-COMBUSTORS

    Junjie Chen* , Wenya Song, Deguang Xu

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.21

    Abstract The combustion and heat transfer characteristics of hydrogen-air or methane-air mixtures in catalytic micro-combustors were studied numerically to assess the impact of wall thermal properties and key operation parameters on the thermal uniformity. A two-dimensional computational fluid dynamics (CFD) model was developed with detailed hetero-/homogeneous chemistry, heat conduction within the solid wall, surface radiation heat transfer, and external heat losses. Parametric studies were carried out to investigate the effect of wall thermal conductivity, feed composition, and flow rate on the thermal uniformity during highly exothermic catalytic reactions. Comparisons of hydrogen- with methane-air systems were made.… More >

  • Open Access

    ARTICLE

    COUPLED LAMINAR NATURAL CONVECTION AND SURFACE RADIATION IN PARTIALLY RIGHT SIDE OPEN CAVITIES

    Ravi Shankar Prasada , S.N. Singhb , Amit Kumar Guptac,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-15, 2018, DOI:10.5098/hmt.11.28

    Abstract This paper presents the results of numerical analysis of steady laminar natural convection and surface radiation in the two dimensional partially right side open square cavity filled with natural air (Pr = 0.70) as the fluid medium. The cavity has left isothermal hot wall with top, bottom and right adiabatic walls. In the present study, the governing equations i.e. Navier-Stokes Equation in the stream function – vorticity form and Energy Equation are solved for a constant thermophysical property fluid under the Boussinesq approximation. For discretization of these equations, the finite volume technique is used. For More >

  • Open Access

    REVIEW

    A REVIEW ON COOLING OF DISCRETE HEATED MODULES USING LIQUID JET IMPINGEMENT

    Naveen G. Patil, Tapano Kumar Hotta*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-13, 2018, DOI:10.5098/hmt.11.16

    Abstract The manuscript deals with the critical review for cooling of discrete heated electronic components using liquid jet impingement. Cooling of electronic components has been a lead area of research in recent years. Due to the rapid growth of electronic industries, there is an enormous rise in the system power consumption, and the reduction in the size of electronic components has led to a rapid increase in the heat dissipation rate per unit volume of components. The present paper deals with the role of liquid jet impingement (heat flux removal rate 200 - 600 W/cm2) for cooling… More >

Displaying 41-50 on page 5 of 403. Per Page