Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (129)
  • Open Access

    ARTICLE

    A Neural Study of the Fractional Heroin Epidemic Model

    Wajaree Weera1, Thongchai Botmart1,*, Samina Zuhra2, Zulqurnain Sabir3, Muhammad Asif Zahoor Raja4, Salem Ben Said5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4453-4467, 2023, DOI:10.32604/cmc.2023.033232

    Abstract This works intends to provide numerical solutions based on the nonlinear fractional order derivatives of the classical White and Comiskey model (NFD-WCM). The fractional order derivatives have provided authentic and accurate solutions for the NDF-WCM. The solutions of the fractional NFD-WCM are provided using the stochastic computing supervised algorithm named Levenberg-Marquard Backpropagation (LMB) based on neural networks (NNs). This regression approach combines gradient descent and Gauss-Newton iterative methods, which means finding a solution through the sequences of different calculations. WCM is used to demonstrate the heroin epidemics. Heroin has been on-growth world wide, mainly in Asia, Europe, and the USA.… More >

  • Open Access

    ARTICLE

    A Detailed Mathematical Analysis of the Vaccination Model for COVID-19

    Abeer S. Alnahdi1,*, Mdi B. Jeelani1, Hanan A. Wahash2, Mansour A. Abdulwasaa3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1315-1343, 2023, DOI:10.32604/cmes.2022.023694

    Abstract This study aims to structure and evaluate a new COVID-19 model which predicts vaccination effect in the Kingdom of Saudi Arabia (KSA) under Atangana-Baleanu-Caputo (ABC) fractional derivatives. On the statistical aspect, we analyze the collected statistical data of fully vaccinated people from June 01, 2021, to February 15, 2022. Then we apply the Eviews program to find the best model for predicting the vaccination against this pandemic, based on daily series data from February 16, 2022, to April 15, 2022. The results of data analysis show that the appropriate model is autoregressive integrated moving average ARIMA (1, 1, 2), and… More >

  • Open Access

    ARTICLE

    Stochastic Investigations for the Fractional Vector-Host Diseased Based Saturated Function of Treatment Model

    Thongchai Botmart1, Qusain Hiader2, Zulqurnain Sabir3, Muhammad Asif Zahoor Raja4, Wajaree Weera1,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 559-573, 2023, DOI:10.32604/cmc.2023.031871

    Abstract The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system (VHDNS) along with the numerical treatment of artificial neural networks (ANNs) techniques supported by Levenberg-Marquardt backpropagation (LMQBP), known as ANNs-LMQBP. This mechanism is physically appropriate, where the number of infected people is increasing along with the limited health services. Furthermore, the biological effects have fading memories and exhibit transition behavior. Initially, the model is developed by considering the two and three categories for the humans and the vector species. The VHDNS is constructed with five classes, susceptible humans , infected humans , recovered… More >

  • Open Access

    ARTICLE

    Mathematical Modeling and Evaluation of Reliability Parameters Based on Survival Possibilities under Uncertain Environment

    Alhanouf Alburaikan1, Hamiden Abd El-Wahed Khalifa1,2, Pavan Kumar3,*, Seyedali Mirjalili4,6, Ibrahim Mekawy5

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1943-1956, 2023, DOI:10.32604/cmes.2022.021815

    Abstract In this article, mathematical modeling for the evaluation of reliability is studied using two methods. One of the methods, is developed based on possibility theory. The performance of the reliability of the system is of prime concern. In view of this, the outcomes for the failure are required to evaluate with utmost care. In possibility theory, the reliability information data determined from decision-making experts are subjective. The same method is also related to the survival possibilities as against the survival probabilities. The other method is the one that is developed using the concept of approximation of closed interval including the… More >

  • Open Access

    ARTICLE

    Forecasting Stock Volatility Using Wavelet-based Exponential Generalized Autoregressive Conditional Heteroscedasticity Methods

    Tariq T. Alshammari1, Mohd Tahir Ismail1, Nawaf N. Hamadneh3,*, S. Al Wadi2, Jamil J. Jaber2, Nawa Alshammari3, Mohammad H. Saleh2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2589-2601, 2023, DOI:10.32604/iasc.2023.024001

    Abstract In this study, we proposed a new model to improve the accuracy of forecasting the stock market volatility pattern. The hypothesized model was validated empirically using a data set collected from the Saudi Arabia stock Exchange (Tadawul). The data is the daily closed price index data from August 2011 to December 2019 with 2027 observations. The proposed forecasting model combines the best maximum overlapping discrete wavelet transform (MODWT) function (Bl14) and exponential generalized autoregressive conditional heteroscedasticity (EGARCH) model. The results show the model's ability to analyze stock market data, highlight important events that contain the most volatile data, and improve… More >

  • Open Access

    ARTICLE

    Reducing the Range of Cancer Risk on BI-RADS 4 Subcategories via Mathematical Modelling

    Nezihal Gokbulut1,2, Evren Hincal1,2,*, Hasan Besim3, Bilgen Kaymakamzade1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 93-109, 2022, DOI:10.32604/cmes.2022.019782

    Abstract Breast Imaging Reporting and Data System, also known as BI-RADS is a universal system used by radiologists and doctors. It constructs a comprehensive language for the diagnosis of breast cancer. BI-RADS 4 category has a wide range of cancer risk since it is divided into 3 categories. Mathematical models play an important role in the diagnosis and treatment of cancer. In this study, data of 42 BI-RADS 4 patients taken from the Center for Breast Health, Near East University Hospital is utilized. Regarding the analysis, a mathematical model is constructed by dividing the population into 4 compartments. Sensitivity analysis is… More >

  • Open Access

    ARTICLE

    A Mathematical Model and a Method for the Calculation of the Downhole Pressure in Composite-Perforation Technological Processes

    Xufeng Li1,2,3, Yantao Bi1,2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1699-1709, 2022, DOI:10.32604/fdmp.2022.019741

    Abstract Using the conservation equations for mass, momentum and energy, a model is elaborated to describe the dynamics of high-energy gases in composite-perforation technological processes. The model includes a precise representation of the gunpowder combustion and related killing fluid displacement. Through numerical solution of such equations, the pressure distribution of the high-energy gas in fractures is obtained, and used to determine crack propagation. The accuracy of the model is verified by comparing the simulation results with actual measurements. More > Graphic Abstract

    A Mathematical Model and a Method for the Calculation of the Downhole Pressure in Composite-Perforation Technological Processes

  • Open Access

    ARTICLE

    Design and Implementation of a State-feedback Controller Using LQR Technique

    Aamir Shahzad1,*, Shadi Munshi2, Sufyan Azam2, Muhammad Nasir Khan3

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2897-2911, 2022, DOI:10.32604/cmc.2022.028441

    Abstract The main objective of this research is to design a state-feedback controller for the rotary inverted pendulum module utilizing the linear quadratic regulator (LQR) technique. The controller maintains the pendulum in the inverted (upright) position and is robust enough to reject external disturbance to maintain its stability. The research work involves three major contributions: mathematical modeling, simulation, and real-time implementation. To design a controller, mathematical modeling has been done by employing the Newton-Euler, Lagrange method. The resulting model was nonlinear so linearization was required, which has been done around a working point. For the estimation of the controller parameters, MATLAB… More >

  • Open Access

    ARTICLE

    A Custom Manipulator for Dental Implantation Through Model-Based Design

    Anitha Govindhan1,*, Karnam Anantha Sunitha2, Sivanathan Kandhasamy3

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 351-365, 2023, DOI:10.32604/iasc.2023.026361

    Abstract This paper presents a Model-Based Design (MBD) approach for the design and control of a customized manipulator intended for drilling and positioning of dental implants accurately with minimal human intervention. While performing an intra-oral surgery for a prolonged duration within a limited oral cavity, the tremor of dentist's hand is inevitable. As a result, wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists. Therefore, we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that… More >

  • Open Access

    ARTICLE

    Glycated Hemoglobin HbA1c: Permittivity Experimental Applications with Some Mathematical Concepts, Temperature and Frequency Variations

    Soliman Abdalla1,2,*, Sherif Kandil2, Waleed El-Shirbeeny1, Fatma Bahabri1,3

    Journal of Renewable Materials, Vol.10, No.9, pp. 2335-2354, 2022, DOI:10.32604/jrm.2022.021211

    Abstract Diabetes disorder turns smoothly to be a global epidemic disorder and the glycated hemoglobin (HbA1c) starts to be an efficient marker of it. The dielectric spectroscopy on different human normal- and diabetic-blood samples is used to characterize and to estimate the HbA1c concentration. “dc-” and ac-measurement of the complex conductivity in the temperature range from 280 K up to 320 K, and in the frequency range from one Hz up to 32 MHz have been performed. The thermal activation energy, ΔEσ, of dc-electric conductivity lies in the range 95 meV < ΔEσ < 115 meV; while the thermal activation energy,… More >

Displaying 31-40 on page 4 of 129. Per Page