Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Study of Ultraviolet Radiation Effect on the Mechanical Properties of Jute and Montmorillonite Nanoclay Reinforced Polyester Nanocomposites

    S. ARULMURUGANa,*, N. VENKATESHWARANa, S. KUMARa, P. CHANDRASEKARa

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 83-91, 2023, DOI:10.32381/JPM.2023.40.1-2.7

    Abstract In this research, the effect of UV light on the mechanical properties of jute polymer nanocomposites was evaluated. Due to the fact that photodegradation is a surface process and is confined to the degradation of the mechanical characteristics of polyester resin, this study focuses on the resin quality. Therefore, test samples comprised of fibre-reinforced polyester nanoclay composites were fabricated different weight ratios of nanoclay. They were put through UV exposure in an Ultraviolet (UV) chamber. Tensile testing samples were made in accordance with ASTMD638 and had a minimum thickness of 3 mm. Additionally, specimens for Flexural and Impact testing were… More >

  • Open Access

    ARTICLE

    The Influence of Acid on the Rock Mechanical Characteristics of Deep Shale in the Wujiaping Formation

    Hao Zhang1, Yan Zhang1,*, Wei Liu2, Ximin Zhang3, Xiang Liu2

    Energy Engineering, Vol.121, No.1, pp. 27-42, 2024, DOI:10.32604/ee.2023.041410

    Abstract The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale, which affects the fracturing effect. Accordingly, we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation, based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation. The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion. And a 15% concentration of hydrochloric acid can effectively dissolve shale. Furthermore, the… More >

  • Open Access

    ARTICLE

    Influence of Bayer Red Mud on the Operational and Mechanical Characteristics of Composite Cement Mortar

    Cheng Hu1,2, Weiheng Xiang1,3,*, Ping Chen2,3, Yi Yang4,5, Libo Zhou3, Jiufang Jiang5, Shunkai Li2,4, Yang Ming1, Qing Li3

    Journal of Renewable Materials, Vol.11, No.11, pp. 3945-3956, 2023, DOI:10.32604/jrm.2023.027544

    Abstract The aim of this study is to enhance the value and utilization of red mud generated in the Bayer process by preparing composite cement mortars. The effects of two different types of Bayer red mud with varying physical and chemical characteristics on the fluidity, mechanical strength, mineral composition, and microstructure of the composite cement mortar were systematically evaluated. The results showed that the optimal addition of red mud A was 10 wt%, while it was 20 wt% for red mud B. The mechanical properties of the composite cement mortar met the standards for P·O42.5 cement. Furthermore, the composite mortar with… More >

  • Open Access

    ARTICLE

    Comparison of Biomechanical Characteristics during the Second Landing Phase in Female Latin Dancers: Evaluation of the Bounce and Side Chasse Step

    Fengfeng Li1, Huiyu Zhou1,2, Datao Xu1, Julien S. Baker3, Yaodong Gu1,*

    Molecular & Cellular Biomechanics, Vol.19, No.3, pp. 115-129, 2022, DOI:10.32604/mcb.2022.022658

    Abstract Research on dance lower extremity joint motion has been limited. Thus, the purpose of this study was to investigate the lower limb biomechanics differences between the side chasse step (SCS) and the bounce step (BS) of the second landing phase in Jive. Thirteen female recreational Latin dancers (Age: 22 ± 2.5 years; Height: 1.65 ± 0.05 m; Weight: 50 ± 4.5 kg; Dance experience: 4 ± 2 years) were involved in the experiment. The same music was used throughout the data collection period. We intended to determine whether these two steps generate different kinematic and kinetic data. The ankle, hip, and knee joint angle, moment, velocity, and… More >

  • Open Access

    ARTICLE

    Analysis of Biomechanical Characteristics of Football Players at Different Levels Kicking with the Inner Edge of Instep

    Enhua Li*

    Molecular & Cellular Biomechanics, Vol.19, No.3, pp. 141-149, 2022, DOI:10.32604/mcb.2022.018558

    Abstract This study aims to analyze the difference in biomechanical properties of football players at different levels when kicking the football with the inner edge of the instep. Before the experiment, ten football players were selected; five were higher than the national level (group A), and the other five players were lower than the national level II (group B). During the experiment, the motion process was captured by a high-speed camera for biomechanical analysis. It was found that in group A, the thigh and leg swung in less time and larger amplitude, the acceleration of backswing and forward swing of the… More >

  • Open Access

    ARTICLE

    Evaluating Simultaneous Impact of Slag and Tire Rubber Powder on Mechanical Characteristics and Durability of Concrete

    Mostafa Amiri1, Farzad Hatami2,*, Emadaldin Mohammadi Golafshani3

    Journal of Renewable Materials, Vol.10, No.8, pp. 2155-2177, 2022, DOI: 10.32604/jrm.2022.019726

    Abstract In this experimental study, the impact of Portland cement replacement by ground granulated blast furnace slag (GGBFS) and micronized rubber powder (MRP) on the compressive, flexural, tensile strengths, and rapid chloride migration test (RCMT) of concrete were assessed. In this study, samples with different binder content and water to binder ratios, including the MRP with the substitution levels of 0%, 2.5% and 5%, and the GGBFS with the substitution ratios of 0%, 20% and 40% by weight of Portland cement were made. According to the results, in the samples containing slag and rubber powder in the early ages, on average,… More > Graphic Abstract

    Evaluating Simultaneous Impact of Slag and Tire Rubber Powder on Mechanical Characteristics and Durability of Concrete

  • Open Access

    ARTICLE

    Analysis of the Stability and Mechanical Characteristics of the Jointed Surrounding Rock and Lining Structure of a Deeply Buried Hydraulic Tunnel

    Changchang Li1, Zuguo Mo2, Haibo Jiang1,*, Fengchun Yang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 29-39, 2022, DOI:10.32604/fdmp.2022.017947

    Abstract On-site monitoring and numerical simulation have been combined to analyze the stability of the jointed surrounding rock and the stress inside the lining structure of a sample deeply buried hydraulic tunnel. We show that the deformation around the tunnel was mainly concentrated in the range 51.37 mm∼66.73 mm, the tunnel circumference was dominated by shear failure, and the maximum plastic zone was about 3.90 m. When the shotcrete treatment was performed immediately after the excavation, the deformation of the surrounding rock was reduced by 58.94%∼76.31%, and the extension of the plastic zone was relatively limited, thereby leading to improvements in terms… More >

  • Open Access

    ABSTRACT

    Biomechanical Characteristics Closely Related with Immune Functions of Dendritic Cells

    Fuzhou Tang1, Jin Chen1, Shichao Zhang1, Zuquan Hu1, Lina Liu1, Long Li1, Yan Ouyang1, Zhu Zeng1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 40-41, 2019, DOI:10.32604/mcb.2019.07082

    Abstract As potent antigen presenting cells, dendritic cells (DCs) are utilized to deliver the signals essential for the initiation of immune responses. The motility of DCs is crucial for migration of immature DCs (imDCs) in peripheral tissue and the interaction between mature DCs (mDCs) and naïve T cells in the secondary lymph node. From biomechanical viewpoint, the deformability of cells is necessary for their motility. Deformation of cells can be divided into active deformation (e.g. chemotaxis) and passive deformation (e.g. migration under shear stress of blood flow). However, there is no detailed study on the deformability of DCs including imDCs and… More >

  • Open Access

    ARTICLE

    The Mechanical Characteristics of Human Endothelial Cells in Response to Single Ionizing Radiation Doses By Using Micropipette Aspiration Technique

    Alireza Mohammadkarim1, Manijhe Mokhtari-Dizaji2,*, Ali Kazemian3, Hazhir Saberi4, Mohammad Mehdi Khani5, Mohsen Bakhshandeh6

    Molecular & Cellular Biomechanics, Vol.16, No.4, pp. 275-287, 2019, DOI:10.32604/mcb.2019.06280

    Abstract The mechanical properties of living cells are known to be promising biomarkers when investigating the health and functions of the human body. Ionizing irradiation results in vascular injury due to endothelial damage. Thus, the current study objective was to evaluate the influence of continuous radiation doses on the mechanical properties of human umbilical vein endothelial cells (HUVECs), and to identify Young’s modulus (E) and viscoelastic behavior. Single-dose (0, 2, 4, 6, and 8 Gy) radiation was applied to HUVECs using a Cobalt-60 treatment machine in the current vitro irradiation study. Thereafter, a micropipette-aspiration technique was used to measure the elastic… More >

  • Open Access

    ARTICLE

    Circumferential variation in mechanical characteristics of porcine descending aorta

    LINGFENG CHEN1,2,3, ZHIPENG GAO1,2,3, BAIMEI LIU1,2,3, YING LV1,2,3, MEIWEN AN1,2,3,*, JILING FENG4,*

    BIOCELL, Vol.42, No.1, pp. 25-34, 2018, DOI:10.32604/biocell.2018.06114

    Abstract Arterial characterization of healthy descending thoracic aorta (DTA) is indispensable in determining stress distributions across wall thickness and different regions that may be responsible for aorta inhomogeneous dilation, rupture, and dissection when aneurysm occurs. Few studies have shown the inhomogeneity of DTA along the aorta tree considering changes in circumferential direction. The present study aims to clarify the circumferential regional characterization of DTA. Porcine DTA tissues were tested according to region and orientation using uniaxial tension. For axial test, results show that the difference in circumferential direction was mainly in collagen fiber modulus, where the anterior collagen fiber modulus was… More >

Displaying 1-10 on page 1 of 13. Per Page