Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ABSTRACT

    Systems Modeling of Cardiomyocyte Mechanobiology

    Philip M. Tan1, Kyle S. Buchholz2, Shulin Cao2, Yasser Aboelkassem2, Jeffrey H. Omens2, Andrew D. McCulloch2,*, Jeffrey J. Saucerman1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 1-3, 2019, DOI:10.32604/mcb.2019.05693

    Abstract In this article, we summarize our systems model of cardiomyocyte mechano-signaling published in PLoS Computational Biology and discuss new approaches to extending these models to predict cardiac myocyte gene expression in response to stretch. More >

  • Open Access

    ABSTRACT

    Preface: The First International Symposium on Biomechanics and Mechanobiology in Cardiovascular System

    Zhiyong Li1,2,*, Dalin Tang1,3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 1-7, 2019, DOI:10.32604/mcb.2019.05830

    Abstract Cardiovascular disease remains as the leading cause of death worldwide, and the technologies developed by different groups need to be communicated and shared with all related research communities for a boarder implementation. Challenges in imaging technology, mathematical modelling, material description, mechanical representation, disease progression, prediction methods, and final transition to clinical applications are calling for collaborative effort of the entire research community to act together and bring research effort closer to actual clinical applications. Researchers from different disciplines need to reach out to share their expertise, as well as to listen to other people to understand the big picture, understand… More >

  • Open Access

    ARTICLE

    Characterizing the Mechanical Variations of Human Femoropopliteal Artery During Aging Process

    Shaoxiong Yang1, Yingxin Qi2, Zonglai Jiang2, Xiaobo Gong1,*

    Molecular & Cellular Biomechanics, Vol.16, No.1, pp. 13-26, 2019, DOI:10.32604/mcb.2019.06096

    Abstract Vascular diseases during aging process are closely correlated to the age-related changes of mechanical stimuli for resident cells. Characterizing the variations of mechanical environments in vessel walls with advancing age is crucial for a better understanding of vascular remodeling and pathological changes. In this study, the mechanical stress, strain, and wall stiffness of the femoropopliteal arteries (FPAs) were compared among four different age groups from adolescent to young, middle-aged, and aged subjects. The material parameters and geometries adopted in the FPA models were obtained from published experimental results. It is found that high mechanical stress appears at different layers in… More >

  • Open Access

    ARTICLE

    Structure - Function Relationships in the Stem Cell's Mechanical World B: Emergent Anisotropy of the Cytoskeleton Correlates to Volume and Shape Changing Stress Exposure

    Hana Chang*, Melissa L. Knothe Tate∗,†,‡

    Molecular & Cellular Biomechanics, Vol.8, No.4, pp. 297-318, 2011, DOI:10.3970/mcb.2011.008.297

    Abstract In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness and remodeling. We hypothesize that… More >

  • Open Access

    ARTICLE

    Structure - Function Relationships in the Stem Cell's Mechanical World A: Seeding Protocols as a Means to Control Shape and Fate of Live Stem Cells

    Joshua A. Zimmermann*, Melissa L. Knothe Tate∗,†,‡

    Molecular & Cellular Biomechanics, Vol.8, No.4, pp. 275-296, 2011, DOI:10.3970/mcb.2011.008.275

    Abstract Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell… More >

  • Open Access

    ARTICLE

    Modelling of Interfaces in Biomechanics and Mechanobiology

    J. M. García-Aznar1,2, M. A. Pérez1,2, P. Moreo1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.3, pp. 271-302, 2009, DOI:10.3970/cmes.2009.048.271

    Abstract There are many interfaces between biological materials with a structural functionality, where their mechanical behaviour is crucial for their own performance. Advanced tools such as cohesive surface models are being used to simulate the failure and degradation of this kind of biological interactions. The goal of this paper, in a first step, is to present some cohesive surface models that include damage and repair in interfaces and its application to different biomechanical problems. Secondly, we discuss about the main challenges that we have to improve in the modelling of interfaces for a mechanobiological approach. More >

Displaying 11-20 on page 2 of 16. Per Page