Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    REVIEW

    Utilization of Multi-Tasking Non-Edible Plants for Phytoremediation and Bioenergy Source-A Review

    Ibrahim M. Abdelsalam1, Mostafa Elshobary1,3,*, Mohamed M. Eladawy1, Mohammed Nagah2

    Phyton-International Journal of Experimental Botany, Vol.88, No.2, pp. 69-90, 2019, DOI:10.32604/phyton.2019.06831

    Abstract Heavy metal contamination of land and freshwater resources is a serious concern worldwide. It adversely affects the health of animals, plants and humans. Therefore, remediation of toxic heavy metals must be highly considered. Unlike other techniques, phytoremediation is a holistic technology and can be used in large scale for soil remediation as it is costless, novel, environmentally-safe and solar-driven technology. Utilization of non-edible plants in phytoremediation is an ingenious technique as they are used to generate new bioenergy resources along with the remediation of contaminated soils. Some nonfood bioenergy crops such as Salix species, Miscanthus species, Populus species, Eucalyptus species,… More >

  • Open Access

    ARTICLE

    Graphene-Based 3D Xerogel as Adsorbent for Removal of Heavy Metal Ions from Industrial Wastewater

    Purnendu, Soumitra Satapathi*

    Journal of Renewable Materials, Vol.5, No.2, pp. 96-102, 2017, DOI:10.7569/JRM.2016.634134

    Abstract Graphene-based 3D porous xerogel was designed through molecular self-assembly of graphene oxide on chitosan matrix and its application in removal of different heavy metal ions from wastewater was investigated. The synthesized xerogel was characterized through FTIR, SEM, XRD and BET surface area analysis. Heavy metal ions, including Pb(II), Cd(II), and Hg(II), were removed from wastewater using this graphene-chitosan (GO-Cs) xerogel and the removal efficiency was monitored through inductively coupled plasma mass spectrometry (ICP-MS). The effect of GO-Cs composition and pH on adsorption efficiency as well as the kinetics of adsorption was studied in detail. The study exhibited that this xerogel… More >

Displaying 31-40 on page 4 of 32. Per Page