Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (506)
  • Open Access

    ARTICLE

    A Hybrid Vision Transformer with Attention Architecture for Efficient Lung Cancer Diagnosis

    Abdu Salam1, Fahd M. Aldosari2, Donia Y. Badawood3, Farhan Amin4,*, Isabel de la Torre5,*, Gerardo Mendez Mezquita6, Henry Fabian Gongora6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073342 - 10 February 2026

    Abstract Lung cancer remains a major global health challenge, with early diagnosis crucial for improved patient survival. Traditional diagnostic techniques, including manual histopathology and radiological assessments, are prone to errors and variability. Deep learning methods, particularly Vision Transformers (ViT), have shown promise for improving diagnostic accuracy by effectively extracting global features. However, ViT-based approaches face challenges related to computational complexity and limited generalizability. This research proposes the DualSet ViT-PSO-SVM framework, integrating a ViT with dual attention mechanisms, Particle Swarm Optimization (PSO), and Support Vector Machines (SVM), aiming for efficient and robust lung cancer classification across multiple… More >

  • Open Access

    ARTICLE

    Effective Deep Learning Models for the Semantic Segmentation of 3D Human MRI Kidney Images

    Roshni Khedgaonkar1, Pravinkumar Sonsare2, Kavita Singh1, Ayman Altameem3, Hameed R. Farhan4, Salil Bharany5, Ateeq Ur Rehman6,*, Ahmad Almogren7,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072651 - 10 February 2026

    Abstract Recent studies indicate that millions of individuals suffer from renal diseases, with renal carcinoma, a type of kidney cancer, emerging as both a chronic illness and a significant cause of mortality. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) have become essential tools for diagnosing and assessing kidney disorders. However, accurate analysis of these medical images is critical for detecting and evaluating tumor severity. This study introduces an integrated hybrid framework that combines three complementary deep learning models for kidney tumor segmentation from MRI images. The proposed framework fuses a customized U-Net and Mask R-CNN… More >

  • Open Access

    ARTICLE

    A Cooperative Hybrid Learning Framework for Automated Dandruff Severity Grading

    Sin-Ye Jhong1, Hui-Che Hsu1,2, Hsin-Hua Huang2, Chih-Hsien Hsia3,4,*, Yulius Harjoseputro2,5, Yung-Yao Chen2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.072633 - 10 February 2026

    Abstract Automated grading of dandruff severity is a clinically significant but challenging task due to the inherent ordinal nature of severity levels and the high prevalence of label noise from subjective expert annotations. Standard classification methods fail to address these dual challenges, limiting their real-world performance. In this paper, a novel, three-phase training framework is proposed that learns a robust ordinal classifier directly from noisy labels. The approach synergistically combines a rank-based ordinal regression backbone with a cooperative, semi-supervised learning strategy to dynamically partition the data into clean and noisy subsets. A hybrid training objective is… More >

  • Open Access

    ARTICLE

    Learning-Based Prediction of Soft-Tissue Motion for Latency Compensation in Teleoperation

    Guangyu Xu1,2, Yuxin Liu1, Bo Yang1, Siyu Lu3,*, Chao Liu4, Junmin Lyu5, Wenfeng Zheng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074938 - 29 January 2026

    Abstract Soft-tissue motion introduces significant challenges in robotic teleoperation, especially in medical scenarios where precise target tracking is critical. Latency across sensing, computation, and actuation chains leads to degraded tracking performance, particularly around high-acceleration segments and trajectory inflection points. This study investigates machine learning-based predictive compensation for latency mitigation in soft-tissue tracking. Three models—autoregressive (AR), long short-term memory (LSTM), and temporal convolutional network (TCN)—were implemented and evaluated on both synthetic and real datasets. By aligning the prediction horizon with the end-to-end system delay, we demonstrate that prediction-based compensation significantly reduces tracking errors. Among the models, TCN More >

  • Open Access

    ARTICLE

    Enhanced COVID-19 and Viral Pneumonia Classification Using Customized EfficientNet-B0: A Comparative Analysis with VGG16 and ResNet50

    Williams Kyei*, Chunyong Yin, Kelvin Amos Nicodemas, Khagendra Darlami

    Journal on Artificial Intelligence, Vol.8, pp. 19-38, 2026, DOI:10.32604/jai.2026.074988 - 20 January 2026

    Abstract The COVID-19 pandemic has underscored the need for rapid and accurate diagnostic tools to differentiate respiratory infections from normal cases using chest X-rays (CXRs). Manual interpretation of CXRs is time-consuming and prone to errors, particularly in distinguishing COVID-19 from viral pneumonia. This research addresses these challenges by proposing a customized EfficientNet-B0 model for ternary classification (COVID-19, Viral Pneumonia, Normal) on the COVID-19 Radiography Database. Employing transfer learning with architectural modifications, including a tailored classification head and regularization techniques, the model achieves superior performance. Evaluated via accuracy, F1-score (macro-averaged), AUROC (macro-averaged), precision (macro-averaged), recall (macro-averaged), inference… More >

  • Open Access

    ARTICLE

    RE-UKAN: A Medical Image Segmentation Network Based on Residual Network and Efficient Local Attention

    Bo Li, Jie Jia*, Peiwen Tan, Xinyan Chen, Dongjin Li

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071186 - 12 January 2026

    Abstract Medical image segmentation is of critical importance in the domain of contemporary medical imaging. However, U-Net and its variants exhibit limitations in capturing complex nonlinear patterns and global contextual information. Although the subsequent U-KAN model enhances nonlinear representation capabilities, it still faces challenges such as gradient vanishing during deep network training and spatial detail loss during feature downsampling, resulting in insufficient segmentation accuracy for edge structures and minute lesions. To address these challenges, this paper proposes the RE-UKAN model, which innovatively improves upon U-KAN. Firstly, a residual network is introduced into the encoder to effectively… More >

  • Open Access

    ARTICLE

    Advancing Breast Cancer Molecular Subtyping: A Comparative Study of Convolutional Neural Networks and Vision Transformers on Mammograms

    Chee Chin Lim1,2,*, Hui Wen Tiu1, Qi Wei Oung1,3, Chiew Chea Lau4, Xiao Jian Tan2,5

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070468 - 12 January 2026

    Abstract Breast cancer remains one of the leading causes of cancer mortality world-wide, with accurate molecular subtyping is critical for guiding treatment and improving patient outcomes. Traditional molecular subtyping via immuno-histochemistry (IHC) test is invasive, time-consuming, and may not fully represent tumor heterogeneity. This study proposes a non-invasive approach using digital mammography images and deep learning algorithm for classifying breast cancer molecular subtypes. Four pretrained models, including two Convolutional Neural Networks (MobileNet_V3_Large and VGG-16) and two Vision Transformers (ViT_B_16 and ViT_Base_Patch16_Clip_224) were fine-tuned to classify images into HER2-enriched, Luminal, Normal-like, and Triple Negative subtypes. Hyperparameter tuning,… More >

  • Open Access

    ARTICLE

    A Blockchain-Based Hybrid Framework for Secure and Scalable Electronic Health Record Management in In-Patient Follow-Up Tracking

    Ahsan Habib Siam1, Md. Ehsanul Haque1, Fahmid Al Farid2, Anindita Sutradhar3, Jia Uddin4,*, Sarina Mansor2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069718 - 12 January 2026

    Abstract As healthcare systems increasingly embrace digitalization, effective management of electronic health records (EHRs) has emerged as a critical priority, particularly in inpatient settings where data sensitivity and real-time access are paramount. Traditional EHR systems face significant challenges, including unauthorized access, data breaches, and inefficiencies in tracking follow-up appointments, which heighten the risk of misdiagnosis and medication errors. To address these issues, this research proposes a hybrid blockchain-based solution for securely managing EHRs, specifically designed as a framework for tracking inpatient follow-ups. By integrating QR code-enabled data access with a blockchain architecture, this innovative approach enhances… More >

  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025

    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    REVIEW

    Transforming Healthcare with State-of-the-Art Medical-LLMs: A Comprehensive Evaluation of Current Advances Using Benchmarking Framework

    Himadri Nath Saha1, Dipanwita Chakraborty Bhattacharya2,*, Sancharita Dutta3, Arnab Bera3, Srutorshi Basuray4, Satyasaran Changdar5, Saptarshi Banerjee6, Jon Turdiev7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-56, 2026, DOI:10.32604/cmc.2025.070507 - 09 December 2025

    Abstract The emergence of Medical Large Language Models has significantly transformed healthcare. Medical Large Language Models (Med-LLMs) serve as transformative tools that enhance clinical practice through applications in decision support, documentation, and diagnostics. This evaluation examines the performance of leading Med-LLMs, including GPT-4Med, Med-PaLM, MEDITRON, PubMedGPT, and MedAlpaca, across diverse medical datasets. It provides graphical comparisons of their effectiveness in distinct healthcare domains. The study introduces a domain-specific categorization system that aligns these models with optimal applications in clinical decision-making, documentation, drug discovery, research, patient interaction, and public health. The paper addresses deployment challenges of Medical-LLMs, More >

Displaying 1-10 on page 1 of 506. Per Page