Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (359)
  • Open Access

    ARTICLE

    Optical Based Gradient-Weighted Class Activation Mapping and Transfer Learning Integrated Pneumonia Prediction Model

    Chia-Wei Jan1, Yu-Jhih Chiu1, Kuan-Lin Chen2, Ting-Chun Yao3, Ping-Huan Kuo1,4,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2989-3010, 2023, DOI:10.32604/csse.2023.042078

    Abstract Pneumonia is a common lung disease that is more prone to affect the elderly and those with weaker respiratory systems. However, hospital medical resources are limited, and sometimes the workload of physicians is too high, which can affect their judgment. Therefore, a good medical assistance system is of great significance for improving the quality of medical care. This study proposed an integrated system by combining transfer learning and gradient-weighted class activation mapping (Grad-CAM). Pneumonia is a common lung disease that is generally diagnosed using X-rays. However, in areas with limited medical resources, a shortage of medical personnel may result in… More >

  • Open Access

    ARTICLE

    Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2791-2814, 2023, DOI:10.32604/csse.2023.038762

    Abstract Data mining plays a crucial role in extracting meaningful knowledge from large-scale data repositories, such as data warehouses and databases. Association rule mining, a fundamental process in data mining, involves discovering correlations, patterns, and causal structures within datasets. In the healthcare domain, association rules offer valuable opportunities for building knowledge bases, enabling intelligent diagnoses, and extracting invaluable information rapidly. This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System (MLARMC-HDMS). The MLARMC-HDMS technique integrates classification and association rule mining (ARM) processes. Initially, the chimp optimization algorithm-based feature selection (COAFS)… More >

  • Open Access

    ARTICLE

    Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System

    Nojood O Aljehane*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 3109-3126, 2023, DOI:10.32604/csse.2023.038042

    Abstract Medical image analysis is an active research topic, with thousands of studies published in the past few years. Transfer learning (TL) including convolutional neural networks (CNNs) focused to enhance efficiency on an innovative task using the knowledge of the same tasks learnt in advance. It has played a major role in medical image analysis since it solves the data scarcity issue along with that it saves hardware resources and time. This study develops an Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System (ETSOTL-MIAS). The goal of the ETSOTL-MIAS technique lies in the identification and classification of… More >

  • Open Access

    ARTICLE

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

    Vitaliy Suvorov1,2,*, Olga Loboda2, Maria Balakina1, Igor Kulczycki2

    Congenital Heart Disease, Vol.18, No.5, pp. 491-505, 2023, DOI:10.32604/chd.2023.030583

    Abstract Background: Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes. The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case. Methods: We performed the prospective cohort study which included 29 children with congenital heart defects. The hearts and the great vessels were modeled and printed out. Measurements of the same cardiac areas were taken in the same planes and points at… More > Graphic Abstract

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

  • Open Access

    REVIEW

    Exploring exosomes to provide evidence for the treatment and prediction of Alzheimer’s disease

    XIANGYU QUAN1, XUETING MA1, GUODONG LI2, XUEQI FU1, JIANGTAO LI1, LINLIN ZENG1,*

    BIOCELL, Vol.47, No.10, pp. 2163-2176, 2023, DOI:10.32604/biocell.2023.031226

    Abstract Exosomes are extracellular vesicles with a 30–150 nm diameter originating from endosomes. In recent years, scientists have regarded exosomes as an ideal small molecule carrier for the targeted treatment of Alzheimer’s disease (AD) across the blood-brain barrier due to their nanoscale size and low immunogenicity. A large amount of evidence shows that exosomes are rich in biomarkers, and it has been found that the changes in biomarker content in blood, cerebrospinal fluid, and urine are often associated with the onset of AD patients. In this paper, some recent advances in the use of exosomes in the treatment of AD are… More > Graphic Abstract

    Exploring exosomes to provide evidence for the treatment and prediction of Alzheimer’s disease

  • Open Access

    ARTICLE

    Learning Discriminatory Information for Object Detection on Urine Sediment Image

    Sixian Chan1,2, Binghui Wu1, Guodao Zhang3, Yuan Yao4, Hongqiang Wang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 411-428, 2024, DOI:10.32604/cmes.2023.029485

    Abstract In clinical practice, the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications. Measuring the amount of each type of urine sediment allows for screening, diagnosis and evaluation of kidney and urinary tract disease, providing insight into the specific type and severity. However, manual urine sediment examination is labor-intensive, time-consuming, and subjective. Traditional machine learning based object detection methods require hand-crafted features for localization and classification, which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments. Deep learning based object detection methods have the potential… More > Graphic Abstract

    Learning Discriminatory Information for Object Detection on Urine Sediment Image

  • Open Access

    ARTICLE

    Deep Fakes in Healthcare: How Deep Learning Can Help to Detect Forgeries

    Alaa Alsaheel, Reem Alhassoun, Reema Alrashed, Noura Almatrafi, Noura Almallouhi, Saleh Albahli*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2461-2482, 2023, DOI:10.32604/cmc.2023.040257

    Abstract With the increasing use of deep learning technology, there is a growing concern over creating deep fake images and videos that can potentially be used for fraud. In healthcare, manipulating medical images could lead to misdiagnosis and potentially life-threatening consequences. Therefore, the primary purpose of this study is to explore the use of deep learning algorithms to detect deep fake images by solving the problem of recognizing the handling of samples of cancer and other diseases. Therefore, this research proposes a framework that leverages state-of-the-art deep convolutional neural networks (CNN) and a large dataset of authentic and deep fake medical… More >

  • Open Access

    ARTICLE

    Machine Learning-Enabled Communication Approach for the Internet of Medical Things

    Rahim Khan1,3, Abdullah Ghani1, Samia Allaoua Chelloug2,*, Mohammed Amin4, Aamir Saeed5, Jason Teo1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1569-1584, 2023, DOI:10.32604/cmc.2023.039859

    Abstract The Internet of Medical Things (IoMT) is mainly concerned with the efficient utilisation of wearable devices in the healthcare domain to manage various processes automatically, whereas machine learning approaches enable these smart systems to make informed decisions. Generally, broadcasting is used for the transmission of frames, whereas congestion, energy efficiency, and excessive load are among the common issues associated with existing approaches. In this paper, a machine learning-enabled shortest path identification scheme is presented to ensure reliable transmission of frames, especially with the minimum possible communication overheads in the IoMT network. For this purpose, the proposed scheme utilises a well-known… More >

  • Open Access

    ARTICLE

    Priority Detector and Classifier Techniques Based on ML for the IoMT

    Rayan A. Alsemmeari1,*, Mohamed Yehia Dahab2, Badraddin Alturki1, Abdulaziz A. Alsulami3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1853-1870, 2023, DOI:10.32604/cmc.2023.038589

    Abstract Emerging telemedicine trends, such as the Internet of Medical Things (IoMT), facilitate regular and efficient interactions between medical devices and computing devices. The importance of IoMT comes from the need to continuously monitor patients’ health conditions in real-time during normal daily activities, which is realized with the help of various wearable devices and sensors. One major health problem is workplace stress, which can lead to cardiovascular disease or psychiatric disorders. Therefore, real-time monitoring of employees’ stress in the workplace is essential. Stress levels and the source of stress could be detected early in the fog layer so that the negative… More >

  • Open Access

    REVIEW

    Development of micro/nanostructured‒based biomaterials with biomedical applications

    AFAF ALHARTHI*

    BIOCELL, Vol.47, No.8, pp. 1743-1755, 2023, DOI:10.32604/biocell.2023.027154

    Abstract Natural biomaterials are now frequently used to build biocarrier systems, which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect. Biomaterials and polymers are of great importance in the synthesis of nanomaterials. The recent studies have tended to use these materials because they are easily obtained from natural sources such as fungi, algae, bacteria, and medicinal plants. They are also biodegradable, compatible with neighborhoods, and non-toxic. Natural biomaterials and polymers are chemically changed when they are linked by cross linking agents with other polymers to create scaffolds, matrices, composites, and interpenetrating polymer networks employing… More >

Displaying 21-30 on page 3 of 359. Per Page