Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (267)
  • Open Access

    ARTICLE

    Multi-Level Knowledge Engineering Approach for Mapping Implicit Aspects to Explicit Aspects

    Jibran Mir1, Azhar Mahmood2,*, Shaheen Khatoon3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3491-3509, 2022, DOI:10.32604/cmc.2022.019952 - 27 September 2021

    Abstract Aspect's extraction is a critical task in aspect-based sentiment analysis, including explicit and implicit aspects identification. While extensive research has identified explicit aspects, little effort has been put forward on implicit aspects extraction due to the complexity of the problem. Moreover, existing research on implicit aspect identification is widely carried out on product reviews targeting specific aspects while neglecting sentences’ dependency problems. Therefore, in this paper, a multi-level knowledge engineering approach for identifying implicit movie aspects is proposed. The proposed method first identifies explicit aspects using a variant of BiLSTM and CRF (Bidirectional Long Short… More >

  • Open Access

    ARTICLE

    DLBT: Deep Learning-Based Transformer to Generate Pseudo-Code from Source Code

    Walaa Gad1,*, Anas Alokla1, Waleed Nazih2, Mustafa Aref1, Abdel-badeeh Salem1

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3117-3132, 2022, DOI:10.32604/cmc.2022.019884 - 27 September 2021

    Abstract Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language. Pseudo-code explains and describes the content of the code without using syntax or programming language technologies. However, writing Pseudo-code to each code instruction is laborious. Recently, neural machine translation is used to generate textual descriptions for the source code. In this paper, a novel deep learning-based transformer (DLBT) model is proposed for automatic Pseudo-code generation from the source code. The proposed model uses deep learning which is based on Neural Machine Translation (NMT)… More >

  • Open Access

    ARTICLE

    User Behavior Traffic Analysis Using a Simplified Memory-Prediction Framework

    Rahmat Budiarto1,*, Ahmad A. Alqarni1, Mohammed Y. Alzahrani1, Muhammad Fermi Pasha2, Mohamed Fazil Mohamed Firdhous3, Deris Stiawan4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2679-2698, 2022, DOI:10.32604/cmc.2022.019847 - 27 September 2021

    Abstract As nearly half of the incidents in enterprise security have been triggered by insiders, it is important to deploy a more intelligent defense system to assist enterprises in pinpointing and resolving the incidents caused by insiders or malicious software (malware) in real-time. Failing to do so may cause a serious loss of reputation as well as business. At the same time, modern network traffic has dynamic patterns, high complexity, and large volumes that make it more difficult to detect malware early. The ability to learn tasks sequentially is crucial to the development of artificial intelligence.… More >

  • Open Access

    ARTICLE

    Network Traffic Prediction Using Radial Kernelized-Tversky Indexes-Based Multilayer Classifier

    M. Govindarajan1,*, V. Chandrasekaran2, S. Anitha3

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 851-863, 2022, DOI:10.32604/csse.2022.019298 - 24 September 2021

    Abstract Accurate cellular network traffic prediction is a crucial task to access Internet services for various devices at any time. With the use of mobile devices, communication services generate numerous data for every moment. Given the increasing dense population of data, traffic learning and prediction are the main components to substantially enhance the effectiveness of demand-aware resource allocation. A novel deep learning technique called radial kernelized LSTM-based connectionist Tversky multilayer deep structure learning (RKLSTM-CTMDSL) model is introduced for traffic prediction with superior accuracy and minimal time consumption. The RKLSTM-CTMDSL model performs attribute selection and classification processes… More >

  • Open Access

    ARTICLE

    ResNet CNN with LSTM Based Tamil Text Detection from Video Frames

    I. Muthumani1,*, N. Malmurugan2, L. Ganesan3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 917-928, 2022, DOI:10.32604/iasc.2022.018030 - 22 September 2021

    Abstract Text content in videos includes applications such as library video retrievals, live-streaming advertisements, opinion mining, and video synthesis. The key components of such systems include video text detection and acknowledgments. This paper provides a framework to detect and accept text video frames, aiming specifically at the cursive script of Tamil text. The model consists of a text detector, script identifier, and text recognizer. The identification in video frames of textual regions is performed using deep neural networks as object detectors. Textual script content is associated with convolutional neural networks (CNNs) and recognized by combining ResNet More >

  • Open Access

    ARTICLE

    Deep Root Memory Optimized Indexing Methodology for Image Search Engines

    R. Karthikeyan1,*, A. Celine Kavida2, P. Suresh3

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 661-672, 2022, DOI:10.32604/csse.2022.018744 - 09 September 2021

    Abstract Digitization has created an abundance of new information sources by altering how pictures are captured. Accessing large image databases from a web portal requires an opted indexing structure instead of reducing the contents of different kinds of databases for quick processing. This approach paves a path toward the increase of efficient image retrieval techniques and numerous research in image indexing involving large image datasets. Image retrieval usually encounters difficulties like a) merging the diverse representations of images and their Indexing, b) the low-level visual characters and semantic characters associated with an image are indirectly proportional,… More >

  • Open Access

    ARTICLE

    Stock Prediction Based on Technical Indicators Using Deep Learning Model

    Manish Agrawal1, Piyush Kumar Shukla2, Rajit Nair3, Anand Nayyar4,5,*, Mehedi Masud6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 287-304, 2022, DOI:10.32604/cmc.2022.014637 - 07 September 2021

    Abstract Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature. The stock data is usually non-stationary, and attributes are non-correlative to each other. Several traditional Stock Technical Indicators (STIs) may incorrectly predict the stock market trends. To study the stock market characteristics using STIs and make efficient trading decisions, a robust model is built. This paper aims to build up an Evolutionary Deep Learning Model (EDLM) to identify stock trends’ prices by using STIs. The proposed model has implemented the Deep Learning… More >

  • Open Access

    ARTICLE

    4-dimensional Printing of Multi-material, Multi-shape Changing Shape Memory Polymer Composites

    MANIKANDAN.N1,*, RAJESH.P.K1

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 327-336, 2021, DOI:10.32381/JPM.2021.38.3-4.12

    Abstract In this research, a new method to fabricate multi-material, multi-shape changing polymer composites is proposed. The method aims to reduce the number of thermomechanical programming steps involved in achieving shape change in a shape memory polymer (SMP) composite structure by including the programming steps directly into the printing process. After a single step of mechanical deformation and thermal loading, the SMP fibers can be activated sequentially to control the shape change. Composite strip samples were fabricated using a Stratasys Objet 260 multimaterial printer. Two polymer inks VeroPureWhite and Agilus30 were used as primary materials. The… More >

  • Open Access

    ARTICLE

    A Hybrid Intrusion Detection Model Based on Spatiotemporal Features

    Linbei Wang1 , Zaoyu Tao1, Lina Wang2,*, Yongjun Ren3

    Journal of Quantum Computing, Vol.3, No.3, pp. 107-118, 2021, DOI:10.32604/jqc.2021.016857 - 21 December 2021

    Abstract With the accelerating process of social informatization, our personal information security and Internet sites, etc., have been facing a series of threats and challenges. Recently, well-developed neural network has seen great advancement in natural language processing and computer vision, which is also adopted in intrusion detection. In this research, a hybrid model integrating MultiScale Convolutional Neural Network and Long Short-term Memory Network (MSCNN-LSTM) is designed to conduct the intrusion detection. Multi-Scale Convolutional Neural Network (MSCNN) is used to extract the spatial characteristics of data sets. And Long Short-term Memory Network (LSTM) is responsible for processing More >

  • Open Access

    EDITORIAL

    A memory lane

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1489-1504, 2021, DOI:10.32604/cmes.2021.019434 - 25 November 2021

    Abstract This article has no abstract. More >

Displaying 181-190 on page 19 of 267. Per Page