Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (133)
  • Open Access

    ARTICLE

    Optimal Deep Learning Based Ransomware Detection and Classification in the Internet of Things Environment

    Manal Abdullah Alohali1, Muna Elsadig1, Fahd N. Al-Wesabi2, Mesfer Al Duhayyim3, Anwer Mustafa Hilal4,*, Abdelwahed Motwakel4

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3087-3102, 2023, DOI:10.32604/csse.2023.036802

    Abstract With the advent of the Internet of Things (IoT), several devices like sensors nowadays can interact and easily share information. But the IoT model is prone to security concerns as several attackers try to hit the network and make it vulnerable. In such scenarios, security concern is the most prominent. Different models were intended to address these security problems; still, several emergent variants of botnet attacks like Bashlite, Mirai, and Persirai use security breaches. The malware classification and detection in the IoT model is still a problem, as the adversary reliably generates a new variant… More >

  • Open Access

    ARTICLE

    Modified Metaheuristics with Transfer Learning Based Insect Pest Classification for Agricultural Crops

    Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana murthy3, Ravuri Daniel4, E. Laxmi Lydia5, Mohamad Khairi Ishak6, Hend Khalid Alkahtani7,*, Ayman Aljarbouh8, Samih M. Mostafa9

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3847-3864, 2023, DOI:10.32604/csse.2023.036552

    Abstract Crop insect detection becomes a tedious process for agronomists because a substantial part of the crops is damaged, and due to the pest attacks, the quality is degraded. They are the major reason behind crop quality degradation and diminished crop productivity. Hence, accurate pest detection is essential to guarantee safety and crop quality. Conventional identification of insects necessitates highly trained taxonomists to detect insects precisely based on morphological features. Lately, some progress has been made in agriculture by employing machine learning (ML) to classify and detect pests. This study introduces a Modified Metaheuristics with Transfer… More >

  • Open Access

    ARTICLE

    Metaheuristics with Vector Quantization Enabled Codebook Compression Model for Secure Industrial Embedded Environment

    Adepu Shravan Kumar, S. Srinivasan*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3607-3620, 2023, DOI:10.32604/iasc.2023.036647

    Abstract At the present time, the Industrial Internet of Things (IIoT) has swiftly evolved and emerged, and picture data that is collected by terminal devices or IoT nodes are tied to the user's private data. The use of image sensors as an automation tool for the IIoT is increasingly becoming more common. Due to the fact that this organisation transfers an enormous number of photographs at any one time, one of the most significant issues that it has is reducing the total quantity of data that is sent and, as a result, the available bandwidth, without… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuned Deep Hybrid Denoising Autoencoder Breast Cancer Classification on Digital Mammograms

    Manar Ahmed Hamza*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2879-2895, 2023, DOI:10.32604/iasc.2023.034719

    Abstract Breast Cancer (BC) is considered the most commonly scrutinized cancer in women worldwide, affecting one in eight women in a lifetime. Mammography screening becomes one such standard method that is helpful in identifying suspicious masses’ malignancy of BC at an initial level. However, the prior identification of masses in mammograms was still challenging for extremely dense and dense breast categories and needs an effective and automatic mechanisms for helping radiotherapists in diagnosis. Deep learning (DL) techniques were broadly utilized for medical imaging applications, particularly breast mass classification. The advancements in the DL field paved the… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithm Based Feature Subset Selection for Students Academic Performance Analysis

    Ierin Babu1,*, R. MathuSoothana2, S. Kumar2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3621-3636, 2023, DOI:10.32604/iasc.2023.033791

    Abstract Educational Data Mining (EDM) is an emergent discipline that concentrates on the design of self-learning and adaptive approaches. Higher education institutions have started to utilize analytical tools to improve students’ grades and retention. Prediction of students’ performance is a difficult process owing to the massive quantity of educational data. Therefore, Artificial Intelligence (AI) techniques can be used for educational data mining in a big data environment. At the same time, in EDM, the feature selection process becomes necessary in creation of feature subsets. Since the feature selection performance affects the predictive performance of any model,… More >

  • Open Access

    ARTICLE

    Red Deer Optimization with Artificial Intelligence Enabled Image Captioning System for Visually Impaired People

    Anwer Mustafa Hilal1,*, Fadwa Alrowais2, Fahd N. Al-Wesabi3, Radwa Marzouk4,5

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1929-1945, 2023, DOI:10.32604/csse.2023.035529

    Abstract The problem of producing a natural language description of an image for describing the visual content has gained more attention in natural language processing (NLP) and computer vision (CV). It can be driven by applications like image retrieval or indexing, virtual assistants, image understanding, and support of visually impaired people (VIP). Though the VIP uses other senses, touch and hearing, for recognizing objects and events, the quality of life of those persons is lower than the standard level. Automatic Image captioning generates captions that will be read loudly to the VIP, thereby realizing matters happening… More >

  • Open Access

    ARTICLE

    Power Scheduling with Max User Comfort in Smart Home: Performance Analysis and Tradeoffs

    Muhammad Irfan1, Ch. Anwar Ul Hassan2, Faisal Althobiani3, Nasir Ayub4,*, Raja Jalees Ul Hussen Khan5, Emad Ismat Ghandourah6, Majid A. Almas7, Saleh Mohammed Ghonaim3, V. R. Shamji3, Saifur Rahman1

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1723-1740, 2023, DOI:10.32604/csse.2023.035141

    Abstract The smart grid has enabled users to control their home energy more effectively and efficiently. A home energy management system (HEM) is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy. Here, we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm (GWA) and Harmony Search Algorithms (HSA). Moreover, a fusion initiated on HSA and GWA operators is used to optimize energy intake. Furthermore, many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge. Hybridization has… More >

  • Open Access

    ARTICLE

    Enhanced Metaheuristics with Trust Aware Route Selection for Wireless Sensor Networks

    A. Francis Saviour Devaraj1, T. Satyanarayana Murthy2, Fayadh Alenezi3, E. Laxmi Lydia4, Mohamad Adzhar Md Zawawi5, Mohamad Khairi Ishak5,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1431-1445, 2023, DOI:10.32604/csse.2023.034421

    Abstract Recently, a trust system was introduced to enhance security and cooperation between nodes in wireless sensor networks (WSN). In routing, the trust system includes or avoids nodes related to the estimated trust values in the routing function. This article introduces Enhanced Metaheuristics with Trust Aware Secure Route Selection Protocol (EMTA-SRSP) for WSN. The presented EMTA-SRSP technique majorly involves the optimal selection of routes in WSN. To accomplish this, the EMTA-SRSP technique involves the design of an oppositional Aquila optimization algorithm to choose safe routes for data communication. For the clustering process, the nodes with maximum More >

  • Open Access

    ARTICLE

    Dragonfly Optimization with Deep Learning Enabled Sentiment Analysis for Arabic Tweets

    Aisha M. Mashraqi, Hanan T. Halawani*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2555-2570, 2023, DOI:10.32604/csse.2023.031246

    Abstract Sentiment Analysis (SA) is one of the Machine Learning (ML) techniques that has been investigated by several researchers in recent years, especially due to the evolution of novel data collection methods focused on social media. In literature, it has been reported that SA data is created for English language in excess of any other language. It is challenging to perform SA for Arabic Twitter data owing to informal nature and rich morphology of Arabic language. An earlier study conducted upon SA for Arabic Twitter focused mostly on automatic extraction of the features from the text.… More >

  • Open Access

    ARTICLE

    Improved Chameleon Swarm Optimization-Based Load Scheduling for IoT-Enabled Cloud Environment

    Manar Ahmed Hamza1,*, Shaha Al-Otaibi2, Sami Althahabi3, Jaber S. Alzahrani4, Abdullah Mohamed5, Abdelwahed Motwakel1, Abu Sarwar Zamani1, Mohamed I. Eldesouki6

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1371-1383, 2023, DOI:10.32604/csse.2023.030232

    Abstract Internet of things (IoT) and cloud computing (CC) becomes widespread in different application domains such as business, e-commerce, healthcare, etc. The recent developments of IoT technology have led to an increase in large amounts of data from various sources. In IoT enabled cloud environment, load scheduling remains a challenging process which is applied for ensuring network stability with maximum resource utilization. The load scheduling problem was regarded as an optimization problem that is solved by metaheuristics. In this view, this study develops a new Circle Chaotic Chameleon Swarm Optimization based Load Scheduling (C3SOA-LS) technique for… More >

Displaying 21-30 on page 3 of 133. Per Page