Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

    Mohammad Javad SheikhMozafari*

    Sound & Vibration, Vol.58, pp. 81-100, 2024, DOI:10.32604/sv.2024.048897

    Abstract Mitigating low-frequency noise poses a significant challenge for acoustic engineers, due to their long wavelength, with conventional porous sound absorbers showing limitations in attenuating such noise. An effective strategy involves combining porous materials with micro-perforated plates (MPP) to address this issue. Given the significant impact of structural variables like panel thickness, hole diameter, and air gap on the acoustic characteristics of MPP, achieving the optimal condition demands numerous sample iterations. The impedance tube’s considerable expense for sound absorption measurement and the substantial cost involved in fabricating each sample using a 3D printer underscore the advantage of utilizing simulation methods to… More > Graphic Abstract

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

  • Open Access

    ARTICLE

    Acoustic Properties of Micro-Perforated Panels Made from Oil Palm Empty Fruit Bunch Fiber Reinforced Polylactic Acid

    Vignesh Sekar1,*, Se Yong Eh Noum1, Azma Putra2, Sivakumar Sivanesan1, Kok Chun Chin1, Yi San Wong1, Dg Hafizah Kassim3

    Sound & Vibration, Vol.55, No.4, pp. 343-352, 2021, DOI:10.32604/sv.2021.014916

    Abstract This paper presents the development and performance of micro-perforated panels (MPP) from natural fiber reinforced composites. The MPP is made of Polylactic Acid (PLA) reinforced with Oil Palm Empty Fruit Bunch Fiber (OPEFBF). The investigation was made by varying the fiber density, air gap, and perforation ratio to observe the effect on the Sound Absorption Coefficient (SAC) through the experiment in an impedance tube. It is found that the peak level of SAC is not affected, but the peak frequency shifts to lower frequency when the fiber density is increased. This phenomenon might be due to the presence of porosity… More >

Displaying 1-10 on page 1 of 2. Per Page