Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ABSTRACT

    Three-dimensional simulations on the formation of droplets in a T-type microchannel

    Jr-Ming Miao1,2, Fuh-Lin Lih3, Yi-Chun Liou4, Hsiu-Kai Chen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.1, pp. 33-34, 2009, DOI:10.3970/icces.2009.012.033

    Abstract To date, miniaturization of fluid handling and fluid analysis devices in the medicine engineering has been emerging in the interdisciplinary research field of micro-fluidics, as a result of miniaturization of the detective device to allow parallelization as well as to reduce analysis time and sample volume. Micro-total-analysis-system (μ -TAS) researches aimed at developing miniaturized and integrated ``lab-on-a-chip'' devices for biochemical analysis applications. Droplet-based micro-mixer is the one of the key components in the developing of μ-TAS. Numerical approach on the dynamic formation of water droplets in a T-type microchannel with a 200μm × 50μm rectangular cross section and 1000μm long… More >

  • Open Access

    ARTICLE

    On the Numerical Study of Capillary-driven Flow in a 3-D Microchannel Model

    C.T. Lee1, C.C. Lee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.5, pp. 375-403, 2015, DOI:10.3970/cmes.2015.104.375

    Abstract In this article, we demonstrate a numerical 3-D chip, and studied the capillary dynamics inside the microchannel. We applied the level set method on the Navier-Stokes equation which incorporates the surface tension and two-phase flow characteristics. We analyzed the capillary dynamics near the junction of two microchannels. Such a highlighting point is important that it not only can provide the information of interface behavior when fluids are made into a head-on collision, but also emphasize the idea for the design of the chip. In addition, we study the pressure distribution of the fluids at the junction. It is shown that… More >

  • Open Access

    ARTICLE

    Modeling of Electric Double Layer Effects through Pressure-driven Microchannel Flows

    E.Y.K. Ng1, S.T. Poh 2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.3, pp. 351-366, 2002, DOI:10.3970/cmes.2002.003.351

    Abstract Advances in microfabrication technology have allowed the use of microchannels in ultra compact, very efficient heat exchangers, which capitalize on the channels large surface area to volume ratio, to transport high heat fluxes with small thermal resistances. One example is the cooling of microchips. However, research into microscale flow and heat transfer phenomena conducted by various researchers provided substantial experimental data and considerable evidence that the behaviour of fluid flow and heat transfer in microchannels without phase change may be different than that which normally occurs in larger more conventional sized channels.
    This paper describes a numerical analysis with… More >

  • Open Access

    ARTICLE

    Mesoscopic Simulation of Binary Immiscible Fluids Flow in a Square Microchannel with Hydrophobic Surfaces

    S. Chen1,2, Y. Liu1,3, B.C. Khoo4, X.J. Fan5, J.T. Fan6

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.3, pp. 181-196, 2007, DOI:10.3970/cmes.2007.019.181

    Abstract The mesoscopic simulation for fluids flow in a square microchannel is investigated using dissipative particle dynamics. The velocity distribution for single fluid in a square channel is compared with the solutions of CFD solver, which is found to be in good agreement with each other. The no-slip boundary condition could be well held for the repulsive coefficient ranged from 9.68 to 18.0. For the same range of repulsive coefficient, various wettabilities could be obtained by changing the repulsive coefficient for binary immiscible fluids, in which the immiscible fluids are achieved by increasing the repulsive force between species. The typical motion… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Droplet Breakup, Splitting and Sorting in a Microfluidic Device

    Chekifi. T1,2, Dennai. B1, Khelfaoui. R1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 205-220, 2015, DOI:10.3970/fdmp.2015.011.205

    Abstract Droplet generation, splitting and sorting are investigated numerically in the framework of a VOF technique for interface tracking and a finite-volume numerical method using the commercial code FLUENT. Droplets of water-in-oil are produced by a flow focusing technique relying on the use of a microchannell equipped with an obstacle to split the droplets. The influence of several parameters potentially affecting this process is investigated parametrically towards the end of identifying "optimal" conditions for droplet breakup. Such parameters include surface tension, the capillary number and the main channel width. We show that the capillary number plays a crucial role in determining… More >

Displaying 31-40 on page 4 of 35. Per Page