Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    Experimental Study on the Flow Boiling of R134a in Sintered Porous Microchannels

    Shuo Wang1,2,*, Huiming Wang1,2, Ying Zhang1,2, Zhiqiang Zhang1,3, Li Jia1,2

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1721-1740, 2025, DOI:10.32604/fhmt.2025.073226 - 31 December 2025

    Abstract This experimental investigation was conducted on the flow boiling performance of refrigerant R134a in two types of parallel microchannels: sintered porous microchannels (PP-MCs) and smooth parallel microchannels (SP-MCs). The tests were performed under controlled conditions including an inlet subcooling of 5 ± 0.2°C, saturation temperature of 33°C, mass fluxes of 346 and 485 kg/m2·s, and a range of heat fluxes. Key findings reveal that the sintered porous microstructure significantly enhances bubble nucleation, reducing the wall superheat required for the onset of nucleate boiling (ONB) to only 0.13°C compared to 2.2°C in smooth channels. The porous structure… More >

  • Open Access

    ARTICLE

    Surface Wettability and Boiling Heat Transfer Enhancement in Microchannels Using Graphene Nanoplatelet and Multi-Walled Carbon Nanotube Coatings

    Ghinwa Al Mimar1, Natrah Kamaruzaman1,*, Kamil Talib Alkhateeb2

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1933-1956, 2025, DOI:10.32604/fhmt.2025.070118 - 31 December 2025

    Abstract The pivotal role microchannels play in the thermal management of electronic components has, in recent decades, prompted extensive research into methods for enhancing their heat transfer performance. Among these methods, surface wettability modification was found to be highly effective owing to its significant influence on boiling dynamics and heat transfer mechanisms. In this study, we modified surface wettability using a nanocomposite coating composed of graphene nano plate (GNPs) and multi-walled carbon nanotubes (MWCNT) and then examined how the modification affected the transfer of boiling heat in microchannels. The resultant heat transfer coefficients for hydrophilic and… More >

  • Open Access

    ARTICLE

    MHD Thermosolutal Flow in Casson-Fluid Microchannels: Taguchi–GRA–PCA Optimization

    Amina Mahreen1, Fateh Mebarek-Oudina2,3,4,*, Amna Ashfaq1, Jawad Raza1, Sami Ullah Khan5, Hanumesh Vaidya6

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2829-2853, 2025, DOI:10.32604/fdmp.2025.072492 - 01 December 2025

    Abstract Understanding the complex interaction between heat and mass transfer in non-Newtonian microflows is essential for the development and optimization of efficient microfluidic and thermal management systems. This study investigates the magnetohydrodynamic (MHD) thermosolutal convection of a Casson fluid within an inclined, porous microchannel subjected to convective boundary conditions. The nonlinear, coupled equations governing momentum, energy, and species transport are solved numerically using the MATLAB bvp4c solver, ensuring high numerical accuracy and stability. To identify the dominant parameters influencing flow behavior and to optimize transport performance, a comprehensive hybrid optimization framework—combining a modified Taguchi design, Grey… More >

  • Open Access

    ARTICLE

    Experimental Study on Flow Boiling Characteristics of Low-GWP Fluid R1234yf in Microchannels Heat Sink

    Ying Zhang1,2, Chao Dang1,2,*, Zhiqiang Zhang1,2

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1215-1242, 2025, DOI:10.32604/fhmt.2025.067373 - 29 August 2025

    Abstract In this study, the flow boiling characteristics of R1234yf in parallel microchannels were experimentally investigated. The experiments were conducted with heat flux from 0 to 550 kW/m2, mass flux of 434, 727, and 1015 kg/(m2 s), saturation temperatures of 293, 298, and 303 K, and inlet sub-cooling of 5, 10, and 15 K. The analysis of the experimental results provides the following conclusions: a reduced mass flux and lower subcooling correspond to a diminished degree of superheat at the boiling inception wall; conversely, an elevated saturation temperature results in a reduced amount of superheat at the… More >

  • Open Access

    REVIEW

    A Review of Pressure Drop Characteristics and Optimization Measures of Two-Phase Flow with Low Boiling Point Working Fluids in Microchannels

    Zongyu Jie1,2, Chao Dang1,2,*, Qingliang Meng 3,4

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1053-1089, 2025, DOI:10.32604/fhmt.2025.066792 - 29 August 2025

    Abstract With the increasing miniaturization of systems and surging demand for power density, accurate prediction and control of two-phase flow pressure drop have become a core challenge restricting the performance of microchannel heat exchangers. Pressure drop, a critical hydraulic characteristic, serves as both a natural constraint for cooling systems and determines the power required to pump the working fluid through microchannels. This paper reviews the characteristics, prediction models, and optimization measures of two-phase flow pressure drop for low-boiling-point working fluids in microchannels. It systematically analyzes key influencing factors such as fluid physical properties, operating conditions, channel… More >

  • Open Access

    ARTICLE

    Enhanced Flow Boiling Heat Transfer of HFE-7100 in Open Microchannels Using Micro-Nano Composite Structures

    Liaofei Yin1,*, Kexin Zhang1, Tianjun Qin1, Wenhao Ma1, Yi Ding1, Yawei Xu2,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 751-764, 2025, DOI:10.32604/fhmt.2025.067385 - 30 June 2025

    Abstract Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermal management of electronic devices in recent years. However, the continuous rise in power density of electronic components imposes more stringent requirements on the heat transfer capability of microchannel flow boiling. HFE-7100, a dielectric coolant with favorable thermophysical properties, has become a focal point of research for enhancing flow boiling performance in open microchannels. The flow boiling heat transfer performance of HFE-7100 was investigated in this study by fabricating micro-nano composite structures… More >

  • Open Access

    ARTICLE

    Conjugate Usage of Experimental for and Theoretical Models Aqua Carboxymethyl Cellulose Nanofluid Flow in Convergent-Divergent Shaped Microchannel

    Shervin Fateh Khanshir1, Saeed Dinarvand2,*, Ramtin Fateh Khanshir3

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 663-684, 2025, DOI:10.32604/fhmt.2025.060559 - 25 April 2025

    Abstract This article aims to model and analyze the heat and fluid flow characteristics of a carboxymethyl cellulose (CMC) nanofluid within a convergent-divergent shaped microchannel (Two-dimensional). The base fluid, water + CMC (0.5%), is mixed with CuO and Al2O3 nanoparticles at volume fractions of 0.5% and 1.5%, respectively. The research is conducted through the conjugate usage of experimental and theoretical models to represent more realistic properties of the non-Newtonian nanofluid. Three types of microchannels including straight, divergent, and convergent are considered, all having the same length and identical inlet cross-sectional area. Using ANSYS FLUENT software, Navier-Stokes equations… More > Graphic Abstract

    Conjugate Usage of Experimental for and Theoretical Models Aqua Carboxymethyl Cellulose Nanofluid Flow in Convergent-Divergent Shaped Microchannel

  • Open Access

    ARTICLE

    Thermo-Hydraulic Performances of Microchannel Heat Sinks with Different Types of Perforated Rectangular Blocks

    Heng Zhao1, Honghua Ma2, Hui Liu1, Xiang Yan1, Huaqing Yu1, Yongjun Xiao1, Xiao Xiao3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 87-105, 2025, DOI:10.32604/fdmp.2024.056577 - 24 January 2025

    Abstract The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks (MCHS) subjected to a uniform heat flux is investigated by means of numerical simulations. Various geometrical configurations are examined, particularly, the combinations of rectangular solid and perforated blocks, used to create a disturbance in the flow. The analysis focuses on several key aspects and related metrics, including the temperature distribution, the mean Fanning friction factor, the pressure drop, the Nusselt number, and the overall heat transfer coefficient across a range of Reynolds numbers (80–870). It is shown that the introduction of such More >

  • Open Access

    ARTICLE

    Air-Side Heat Transfer Performance Prediction for Microchannel Heat Exchangers Using Data-Driven Models with Dimensionless Numbers

    Long Huang1,2,3,*, Junjia Zou3, Baoqing Liu1, Zhijiang Jin1,2, Jinyuan Qian1

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1613-1643, 2024, DOI:10.32604/fhmt.2024.058231 - 19 December 2024

    Abstract This study explores the effectiveness of machine learning models in predicting the air-side performance of microchannel heat exchangers. The data were generated by experimentally validated Computational Fluid Dynamics (CFD) simulations of air-to-water microchannel heat exchangers. A distinctive aspect of this research is the comparative analysis of four diverse machine learning algorithms: Artificial Neural Networks (ANN), Support Vector Machines (SVM), Random Forest (RF), and Gaussian Process Regression (GPR). These models are adeptly applied to predict air-side heat transfer performance with high precision, with ANN and GPR exhibiting notably superior accuracy. Additionally, this research further delves into… More >

  • Open Access

    ARTICLE

    Effect of the Geometrical Parameter of Open Microchannel on Pool Boiling Enhancement

    Ali M. H. Al-Obaidy*, Ekhlas M. Fayyadh, Amer M. Al-Dabagh

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1421-1442, 2024, DOI:10.32604/fhmt.2024.055063 - 30 October 2024

    Abstract High heat dissipation is required for miniaturization and increasing the power of electronic systems. Pool boiling is a promising option for achieving efficient heat dissipation at low wall superheat without the need for moving parts. Many studies have focused on improving heat transfer efficiency during boiling by modifying the surface of the heating element. This paper presents an experimental investigation on improving pool boiling heat transfer using an open microchannel. The primary goal of this work is to investigate the impact of the channel geometry characteristics on boiling heat transfer. Initially, rectangular microchannels were prepared… More > Graphic Abstract

    Effect of the Geometrical Parameter of Open Microchannel on Pool Boiling Enhancement

Displaying 1-10 on page 1 of 47. Per Page