Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID

    A. El Mansouria,b, M. Hasnaouia,*, A. Amahmida , Y. Dahania , M. Alouaha , S. Hasnaouia , R. Khaoulaa , M. Ouahasa, R. Bennacerb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-14, 2017, DOI:10.5098/hmt.9.28

    Abstract A two-dimensional numerical simulation is conducted to study natural convection flow and heat transfer characteristics in a square cavity filled with a micropolar fluid. The lower and upper walls of the cavity are respectively subject to isothermal heating and cooling while the temperatures of both vertical sides decrease linearly in the upwards direction. The Lattice-Boltzmann Method (LBM), with the multi-relaxation time (MRT) scheme for the collision process, is used to solve the problem with the objective to assess the ability and efficiency of this numerical method to describe the micropolar fluid behavior under the effect of the imposed thermal boundary… More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION ON HEAT TRANSFER MAGNETOHYDRODYNAMIC FLOW OF MICROPOLAR CASSON FLUID OVER A HORIZONTAL CIRCULAR CYLINDER WITH THERMAL RADIATION

    Hamzeh T. Alkasasbeh*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.32

    Abstract This paper focuses on the numerical solution for magnetohydrodynamic (MHD) flow of micropolar Casson fluid with thermal radiation over a horizontal circular cylinder. The nonlinear partial differential equations of the boundary layer are first transformed into a non-dimensional form and then solved numerically using an implicit finite difference scheme known as Keller-box method. The The effects of the emerging parameters, namely Casson fluid parameter, magnetic parameter, radiation parameter and micropolar parameter on the local Nusselt number and the local skin friction coefficient, as well as the temperature, velocity and angular velocity profiles are shown graphically and discussed. The present results… More >

  • Open Access

    ARTICLE

    COMPUTATION OF UNSTEADY MHD MIXED CONVECTIVE HEAT AND MASS TRANSFER IN DISSIPATIVE REACTIVE MICROPOLAR FLOW CONSIDERING SORET AND DUFOUR EFFECTS

    M.D. Shamshuddina,*, A.J. Chamkhab,c, Thirupathi Thummad, M.C. Rajue

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-15, 2018, DOI:10.5098/hmt.10.15

    Abstract In the current paper, a finite element computational solution is conducted for MHD double diffusive flow characterizing dissipative micropolar mixed convective heat and mass transfer adjacent to a vertical porous plate embedded in a saturated porous medium. The micropolar fluid is also chemically reacting, both Soret and Dufour effects and also heat absorption included. The governing partial differential equations for momentum, heat, angular momentum and species conservation are transformed into dimensionless form under the assumption of low Reynolds number with appropriate dimensionless quantities. The emerging boundary value problem is then solved numerically with an efficient computational finite element method employing… More >

  • Open Access

    ARTICLE

    MATHEMATICAL MODELING OF MHD FLOW OF HYBRID MICROPOLAR FERROFLUIDS ABOUT A SOLID SPHERE

    Hamzeh T. Alkasasbeh*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.43

    Abstract The purpose of this study is mathematical simulation the combined free convection of hybrid micropolar ferrofluids about a solid sphere with magnetic force. We studied the magnetic oxide (Fe3O4) and Cobalt Iron Oxide (CoFe2O4) nanoparticles and suspended them into water–ethylene glycol (EG) (H2O+(CH2OH)2 (50-50%) mixture. Numerical results for correlated physical quantities were gained through the Keller Box method along with the assistance of MATLAB software. The influence of relevant contributing parameters on physical quantities are inspected through tables and graphical illustrations. According to the current findings, the mono ferrofluid has the highest local skin friction, heat transmission rate, velocity and… More >

  • Open Access

    ARTICLE

    THERMOPHORESIS IMPACT ON A MICROPOLAR FLUID UNDER CHANGEABLE HEAT FLUX IN CONDUCTING FIELD

    P. Chandra Reddya, B. Hari Babub,*, K. Sreenivasuluc

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-5, 2022, DOI:10.5098/hmt.19.27

    Abstract This examination carried out on thermophoresis impact on a micropolar fluid under heat flux which is not changeable in conducting field. The flow past a vertical porous plate is taken with the influence of thermal radiation and diffusion simultaneously. The flow governed non linear partial differential equations in this model are distorted to a structure of non-linear ordinary ones through fitting corresponding transformations and later solved by Runge–Kutta Fourth order with shooting technique method. The effects of selected corporal parameters on the dimensionless velocity, microrotation and temperature profiles are examined and handled graphically. Lastly, numerical table values of the extended… More >

  • Open Access

    ARTICLE

    Theory and Semi-Analytical Study of Micropolar Fluid Dynamics through a Porous Channel

    Aziz Khan1, Sana Ullah2, Kamal Shah1,3, Manar A. Alqudah4, Thabet Abdeljawad1,5,*, Fazal Ghani2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1473-1486, 2023, DOI:10.32604/cmes.2022.023019

    Abstract In this work, We are looking at the characteristics of micropolar flow in a porous channel that’s being driven by suction or injection. The working of the fluid is described in the flow model. We can reduce the governing nonlinear partial differential equations (PDEs) to a model of coupled systems of nonlinear ordinary differential equations using similarity variables (ODEs). In order to obtain the results of a coupled system of nonlinear ODEs, we discuss a method which is known as the differential transform method (DTM). The concern transform is an excellent mathematical tool to obtain the analytical series solution to… More > Graphic Abstract

    Theory and Semi-Analytical Study of Micropolar Fluid Dynamics through a Porous Channel

  • Open Access

    ARTICLE

    Unsteady Flow and Heat Transfer of a Casson Micropolar Nanofluid over a Curved Stretching/Shrinking Surface

    Muhammad A. Sadiq1,2,*, Nadeem Abbas3, Haitham M. S. Bahaidarah4, Mohammad Amjad5

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 471-486, 2023, DOI:10.32604/fdmp.2022.021133

    Abstract We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface, together with a heat transfer analysis of the same problem. The body force acting perpendicular to the surface wall is in charge of regulating the fluid flow rate. Curvilinear coordinates are used to account for the considered curved geometry and a set of balance equations for mass, momentum, energy and concentration is obtained accordingly. These are turned into ordinary differential equations using a similarity transformation. We show that these equations have dual solutions for a number… More >

  • Open Access

    ARTICLE

    The Effects of Thermal Radiation and Viscous Dissipation on the Stagnation Point Flow of a Micropolar Fluid over a Permeable Stretching Sheet in the Presence of Porous Dissipation

    Muhammad Salman Kausar1, H.A.M. Al-Sharifi2, Abid Hussanan3,*, Mustafa Mamat1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 61-81, 2023, DOI:10.32604/fdmp.2023.021590

    Abstract In this paper, the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed. A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations, which are then solved numerically by a fourth–order Runge–Kutta method. It is found that the linear fluid velocity decreases with the enhancement of the porosity, boundary, and suction parameters. Conversely, it increases with the micropolar and injection parameters. The angular velocity grows with the boundary, porosity,… More >

  • Open Access

    ARTICLE

    Rotational Effect on the Propagation of Waves in a Magneto-Micropolar Thermoelastic Medium

    A. M. Abd-Alla1,*, S. M. Abo-Dahab2, M. A. Abdelhafez1, A. M. Farhan3,4

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 205-220, 2021, DOI:10.32604/cmc.2021.015563

    Abstract The present paper aims to explore how the magnetic field, ramp parameter, and rotation affect a generalized micropolar thermoelastic medium that is standardized isotropic within the half-space. By employing normal mode analysis and Lame’s potential theory, the authors could express analytically the components of displacement, stress, couple stress, and temperature field in the physical domain. They calculated such manners of expression numerically and plotted the matching graphs to highlight and make comparisons with theoretical findings. The highlights of the paper cover the impacts of various parameters on the rotating micropolar thermoelastic half-space. Nevertheless, the non-dimensional temperature is not affected by… More >

  • Open Access

    ARTICLE

    A Novel BEM for Modeling and Simulation of 3T Nonlinear Generalized Anisotropic Micropolar-Thermoelasticity Theory with Memory Dependent Derivative

    Mohamed Abdelsabour Fahmy1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 175-199, 2021, DOI:10.32604/cmes.2021.012218

    Abstract The main aim of this paper is to propose a new memory dependent derivative (MDD) theory which called threetemperature nonlinear generalized anisotropic micropolar-thermoelasticity. The system of governing equations of the problems associated with the proposed theory is extremely difficult or impossible to solve analytically due to nonlinearity, MDD diffusion, multi-variable nature, multi-stage processing and anisotropic properties of the considered material. Therefore, we propose a novel boundary element method (BEM) formulation for modeling and simulation of such system. The computational performance of the proposed technique has been investigated. The numerical results illustrate the effects of time delays and kernel functions on… More >

Displaying 11-20 on page 2 of 32. Per Page