Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Heat Absorption and Joule Heating Effects on Transient Free Convective Reactive Micropolar Fluid Flow Past a Vertical Porous Plate

    MD. Shamshuddin1, *, C. Balarama Krishna2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 207-231, 2019, DOI:10.32604/fdmp.2019.00449

    Abstract Mathematical model for an unsteady, incompressible, electrically conducting micropolar fluid past a vertical plate through porous medium with constant plate velocity has been investigated in the present study. Heat absorption, Joulian dissipation, and firstorder chemical reaction is also considered. Under the assumption of low Reynolds number, the governing transport equations are rendered into non-dimensional form and the transformed first order differential equations are solved by employing an efficient finite element method. Influence of various flow parameters on linear velocity, microrotation velocity, temperature, and concentration are presented graphically. The effects of heat absorption and chemical reaction rate decelerate the flow is… More >

  • Open Access

    ARTICLE

    Rotational Motion of Micropolar Fluid Spheroid in Concentric Spheroidal Container

    M. Krishna Prasad1, G. Manpreet Kaur1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 107-125, 2017, DOI:10.3970/fdmp.2017.013.107

    Abstract The slow steady rotation of a micropolar fluid spheroid whose shape deviates slightly from that of a sphere in concentric spheroidal container filled with Newtonian viscous fluid is studied analytically. The boundary conditions used are the continuity of velocity and stress components, and spin vorticity relation. The torque and wall correction factor exerted on the micropolar fluid spheroid is obtained. The dependence of wall correction factor on the micropolarity parameter, spin parameter, viscosity ratio and deformation parameter is studied numerically and its variation is presented graphically. In the limiting cases, the torque acting on solid spheroid in spheroidal container and… More >

  • Open Access

    ARTICLE

    A multiscale approach for the micropolar continuum model

    Hiroshi Kadowaki1, Wing Kam Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.3, pp. 269-282, 2005, DOI:10.3970/cmes.2005.007.269

    Abstract A method to derive governing equations and elastic-plastic constitutive relations for the micropolar continuum model is proposed. Averaging procedures are operated over a surrounding sub-domain for each material point to bridge a discrete microstructure to a macro continuum model. Material parameters are determined by these procedures. The size of the sub-domain represents the material intrinsic length scale, and it is passed into the macroscopic governing equation so that the numerical solution can be regularized for analyses of failure phenomena. An application to a simple granular material model is presented. More >

  • Open Access

    ARTICLE

    Micropolar Theory and Its Applications to Mesoscopic and Microscopic Problems

    Youping Chen1, James D Lee2, Azim Esk,arian1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.1, pp. 35-44, 2004, DOI:10.3970/cmes.2004.005.035

    Abstract This paper addresses the need of theories and simulations for material body of mesoscopic and microscopic sizes. An overview of polar theories is presented. The micropolar theory proposed by Eringen is introduced and compared with other polar theories. Constitutive equations of micropolar thermo-visco-elastic solid are derived. Finite element analyses have been performed for a few sample problems with wide range of length scales. Based on the discussion, comparison and computer simulations, the unique feature and applicability of micropolar theory are demonstrated. More >

  • Open Access

    ARTICLE

    Conjugate Heat Transfer in Uniformly Heated Enclosure Filled with Micropolar Fluid

    H. Imtiaz1, F. M. Mahfouz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.3, pp. 171-192, 2015, DOI:10.3970/cmes.2015.108.171

    Abstract This paper investigates numerically the conjugate heat transfer in a concentric enclosure that is formed between two concentric cylinders and filled with micropolar fluid. The wall of inner cylinder is considerably thick, while the wall of outer cylinder is very thin. The inner cylinder is heated from inner side through constant heat flux, whereas the outer cylinder is cooled and maintained at constant temperature. The induced buoyancy driven flow and associated conjugate heat transfer are predicted numerically by solving flow and energy governing equations considering a combination of finite difference and Fourier spectral methods. The study investigates the effect of… More >

  • Open Access

    ARTICLE

    Primary and Secondary Flows on Unsteady MHD Free Convective Micropolar Fluid Flow Past an Inclined Plate in a Rotating System: a Finite Element Analysis

    M. D. Shamshuddin1, *, P. V. Satya Narayana2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 57-86, 2018, DOI:10.3970/fdmp.2018.014.057

    Abstract In the present paper, a numerical analysis is performed to study the primary and secondary flows of a micropolar fluid flow past an inclined plate with viscous dissipation and thermal radiation in a rotating frame. A uniform magnetic field of strength Bo is applied normal to the plane of the plate. The whole system rotates with uniform angular velocity about an axis normal to the plate. The governing partial differential equations are transformed into coupled nonlinear partial differential equations by using the appropriate dimensionless quantities. The resulting equations are then solved by the Galerkin finite element method. The influencing pertinent… More >

  • Open Access

    ARTICLE

    Characteristics of a Hydromagnetic Non-Newtonian Squeeze Film Between Wide Parallel Rectangular Plates

    J.R. Lin1, T.L. Chou2, L.J. Liang2, M.C. Lin2, P.H. Lee2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.1, pp. 49-61, 2015, DOI:10.3970/fdmp.2015.011.049

    Abstract The characteristics of a hydromagnetic non-Newtonian squeeze film formed between parallel rectangular plates under the application on an external magnetic field are investigated. A specific hydromagnetic non-Newtonian Reynolds equation is derived via pplication of the hydromagnetic flow theory together with the micro-continuum theory. It is found that the coupled effects of electrically conducting fluids and micropolar fluids result in a higher load capacity and a longer approaching time with respect to the non-conducting Newtonian case. These improved characteristics become more pronounced as the magnetic Hartmann parameter, the coupling parameter, and the fluid-gap parameter are increased. More >

  • Open Access

    ARTICLE

    Effects of Non-Newtonian Micropolar Fluids on the Dynamic Characteristics of Wide Tapered-Land Slider Bearings

    J.R. Lin1, L.M. Chu2, T.L. Chou3, L.J. Liang3, P.Y. Wang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 163-177, 2014, DOI:10.3970/fdmp.2014.010.163

    Abstract We investigate the influence of non-Newtonian micropolar fluids on the dynamic characteristics of wide tapered-land slider bearings. The study is carried out on the basis of the micro-continuum theory originally developed by Eringen (1966). Analytical expressions for the linear dynamic coefficients are provided and compared with earlier results in the literature. In particular, direct comparison with the Newtonian fluid-lubricated tapered-land bearings by Lin et al. (2006) indicates that the use of non-Newtonian micropolar fluids can lead to a significant increase in the values of stiffness and damping coefficients. Such improvements are found to be even more pronounced for larger values… More >

  • Open Access

    ARTICLE

    Wave Propagation in a Magneto-Micropolar Thermoelastic Medium with Two Temperatures for Three-Phase-Lag Model

    SamiaM.Said1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 1-24, 2016, DOI:10.3970/cmc.2016.052.001

    Abstract The present paper is concerned with the wave propagation in a micropolar thermoelastic solid with distinct two temperatures under the effect of the magnetic field in the presence of the gravity field and an internal heat source. The formulation of the problem is applied in the context of the three-phase-lag model and Green-Naghdi theory without dissipation. The medium is a homogeneous isotropic thermoelastic in the half-space. The exact expressions of the considered variables are obtained by using normal mode analysis. Comparisons are made with the results in the two theories in the absence and presence of the magnetic field as… More >

  • Open Access

    ARTICLE

    Elastic Vibration Behaviors Oof Carbon Nanotubes Based on Micropolar Mechanics

    G. Q. Xie1,2, S. Y. Long1,3

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 11-20, 2006, DOI:10.3970/cmc.2006.004.011

    Abstract The concept of the micropolar theory is employed to investigate vibration behaviors of carbon nanotubes. The constitutive relation has been deduced from the two-dimensional analysis of the microstructure of the carbon nanotube. Van der Waals interactions are simulated by a weak spring model. Hamilton's principle is employed to obtain dynamics equations of the multi-walled carbon nanotube. Numerical examples for both single-walled and double-walled carbon nanotubes are presented and the significant difference in vibration behaviors between them has been distinguished. Numerical results show that fundamental frequencies for the cantilever single-walled carbon nanotube decreases with increase of the aspect ratio of them,… More >

Displaying 21-30 on page 3 of 32. Per Page