Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Identification of Key Links in Electric Power Operation Based-Spatiotemporal Mixing Convolution Neural Network

    Lei Feng1, Bo Wang1,*, Fuqi Ma1, Hengrui Ma2, Mohamed A. Mohamed3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1487-1501, 2023, DOI:10.32604/csse.2023.035377 - 09 February 2023

    Abstract As the scale of the power system continues to expand, the environment for power operations becomes more and more complex. Existing risk management and control methods for power operations can only set the same risk detection standard and conduct the risk detection for any scenario indiscriminately. Therefore, more reliable and accurate security control methods are urgently needed. In order to improve the accuracy and reliability of the operation risk management and control method, this paper proposes a method for identifying the key links in the whole process of electric power operation based on the spatiotemporal… More >

  • Open Access

    ARTICLE

    De-Noising Brain MRI Images by Mixing Concatenation and Residual Learning (MCR)

    Kazim Ali1,*, Adnan N. Qureshi1, Muhammad Shahid Bhatti2, Abid Sohail2, Muhammad Hijji3, Atif Saeed2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1167-1186, 2023, DOI:10.32604/csse.2023.032508 - 03 November 2022

    Abstract Brain magnetic resonance images (MRI) are used to diagnose the different diseases of the brain, such as swelling and tumor detection. The quality of the brain MR images is degraded by different noises, usually salt & pepper and Gaussian noises, which are added to the MR images during the acquisition process. In the presence of these noises, medical experts are facing problems in diagnosing diseases from noisy brain MR images. Therefore, we have proposed a de-noising method by mixing concatenation, and residual deep learning techniques called the MCR de-noising method. Our proposed MCR method is… More >

  • Open Access

    ARTICLE

    Optimization Analysis of the Mixing Chamber and Diffuser of Ejector Based on Fano Flow Model

    Lixing Zheng1,*, Weibo Wang2, Yiyan Zhang1, Lingmei Wang3, Wei Lu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.1, pp. 153-170, 2022, DOI:10.32604/cmes.2022.021235 - 18 July 2022

    Abstract An improved model to calculate the length of the mixing chamber of the ejector was proposed on the basis of the Fano flow model, and a method to optimize the structures of the mixing chamber and diffuser of the ejector was put forward. The accuracy of the model was verified by comparing the theoretical results calculated using the model to experimental data reported in literature. Variations in the length of the mixing chamber Lm and length of the diffuser Ld with respect to variations in the outlet temperature of the ejector Tc, outlet pressure of the ejector… More >

  • Open Access

    ARTICLE

    Non-Negative Minimum Volume Factorization (NMVF) for Hyperspectral Images (HSI) Unmixing: A Hybrid Approach

    Kriti Mahajan1, Urvashi Garg1, Nitin Mittal2, Yunyoung Nam3, Byeong-Gwon Kang4,*, Mohamed Abouhawwash5,6

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3705-3720, 2022, DOI:10.32604/cmc.2022.027936 - 16 June 2022

    Abstract Spectral unmixing is essential for exploitation of remotely sensed data of Hyperspectral Images (HSI). It amounts to the identification of a position of spectral signatures that are pure and therefore called end members and their matching fractional, draft rules abundances for every pixel in HSI. This paper aims to unmix hyperspectral data using the minimal volume method of elementary scrutiny. Moreover, the problem of optimization is solved by the implementation of the sequence of small problems that are constrained quadratically. The hard constraint in the final step for the abundance fraction is then replaced with… More >

  • Open Access

    ARTICLE

    Optimization of a High-pressure Water-Powder Mixing Prototype for Offshore Platforms

    Shu Zheng1,*, Yang Yaln2, Shuyu Liu3, Mingxuan Xia1,2, Shaojie Li1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 537-548, 2022, DOI:10.32604/fdmp.2022.018500 - 22 February 2022

    Abstract A new device is designed to promote the mixing of high-pressure water jets and powders in typical industrial applications. The water and powder mixing devices traditionally used on offshore platforms are detrimentally affected by the geometrical configuration of the water nozzle and the powder spraying pipe, which are parallel, resulting in small intersecting volumes of liquid and powder. By allowing the related jets to intersect, in the present work the optimal horizontal distance, vertical distance and intersection angle are determined through a parametric investigation. It is also shown that such values change if the number More >

  • Open Access

    ARTICLE

    Effect of Mixing Strategy on the Structure-Properties of the PLA/PBAT Blends Incorporated with CNC

    Deniz Sema Sarul1, Dogan Arslan2, Emre Vatansever1, Yusuf Kahraman2, Ali Durmus3, Reza Salehiyan4, Mohammadreza Nofar1,2,*

    Journal of Renewable Materials, Vol.10, No.1, pp. 149-164, 2022, DOI:10.32604/jrm.2022.017003 - 27 July 2021

    Abstract Polylactide (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend nanocomposites including 3 wt% of cellulose nanocrystals (CNCs) were prepared by melt compounding method in a twin-screw extruder and an internal mixer. Blend nanocomposites were formulated by diluting three different masterbatches prepared by solution casting method that contained 7 wt% of CNC. These masterbatches were: (m1) PLA/PBAT/CNC masterbatch; (m2) PLA/CNC masterbatch; and (m3) PBAT/CNC masterbatch. These were to explore how different preparation methods affect the dispersion and localization of CNC and hence the properties of PLA/PBAT/CNC blend nanocomposites. Scanning electron microscopy (SEM) was used to study the structural changes… More >

  • Open Access

    ARTICLE

    A NUMERICAL AND EXPERIMENTAL STUDY OF THE EFFECT OF USING PERSONAL VENTILATION SYSTEMS ON INDOOR AIR QUALITY IN OFFICE ROOMS

    Hussien Aziz Saheb,*, Ala'a Abbas Mahdi, Qusay Rasheed Al-amir

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-15, 2021, DOI:10.5098/hmt.16.9

    Abstract In this study, indoor air quality and thermal comfort were investigated for two persons sitting inside an office room of dimensions (3×2.5×2.5m). The office room is equipped with personal ventilation systems positioned 50 cm from the person's face. These systems are characterized by the ability to change the rates of airflow (ATD). Experimental studies and results were conducted on a thermal manikin that simulates the human body in a sitting position, and the results are compared with CFD analysis using the k-epsilon and the RNG turbulent models. The experimental study focused on measuring the speed… More >

  • Open Access

    ARTICLE

    On the Effect of the Rotating Chamber Reverse Speed on the Mixing of SiC Ceramic Particles in a Dry Granulation Process

    Dongling Yu1, Zuoxiang Zhu1, Jiangen Zhou1, Dahai Liao1,*, Nanxing Wu1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 487-500, 2021, DOI:10.32604/fdmp.2021.014712 - 02 April 2021

    Abstract In order to control the accumulation of SiC ceramic particles on the wall of the rotating chamber in the frame of a dry granulation process, the effect of the wall reverse speed on the mixing process is investigated. In particular, an Euler-Euler two-phase flow model is used to analyze the dynamics of both SiC particles and air. The numerical results show that by setting a certain reverse rotating speed of the rotating chamber, the accumulation of SiC particles on the wall can be improved, i.e., their direction of motion in proximity to the wall can be changed More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Mixing and Hydrodynamics of Asphalt and Rubber in a Stirred Tank

    Zechen Yao1, Renfeng Yang1,*, Haichao An2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 397-412, 2021, DOI:10.32604/fdmp.2021.012114 - 02 April 2021

    Abstract Computational fluid dynamics (CFD) has been used to analyze the mixing process of Asphalt and Rubber (AR) in a stirred tank with a six flat-blade disc turbine (Rushton), a down-pumping 45° pitched-blade turbine (PBTD-6) and a down-pumping propeller (TXL). The two-phase (solid-liquid) flow in the considered stirred tank has been modelled in the framework of an Eulerian-Eulerian approach, a laminar-flow assumption and a multi-reference frame strategy. The following effects have been investigated: The influence of the impeller speed, impeller type, crumb rubber (CR) particle diameter and initial CR particle loading on the quality of the… More >

  • Open Access

    ARTICLE

    Diffusion of a Nonvolatile Fuel Spray in Swirl Flow

    Yanju Wei1,*, Jie Zhang1, Shengcai Deng1, Yajie Zhang1, Yajing Yang2, Hao Chen3

    Energy Engineering, Vol.118, No.1, pp. 73-87, 2021, DOI:10.32604/EE.2020.012482 - 17 November 2020

    Abstract The diffusion of fuel spray in swirl flow is vital for the combustion of diesel engine, however, the researches on this is still mysterious due to the obstacles on direct investigations on a real engine. The research of intake swirl in engine at present normally use CFD simulation or based on data analysis of combustion and exhaust emission, the specific mixing process of fuel in swirl flow still not very clear. In this paper, a rapid compression machine (RCM) with an optical combustion chamber was established with the mean compression velocity of 7.55 m/s. Three… More >

Displaying 11-20 on page 2 of 32. Per Page