Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Enhancing Lightweight Mango Disease Detection Model Performance through a Combined Attention Module

    Wen-Tsai Sung1, Indra Griha Tofik Isa2,3, Sung-Jung Hsiao4,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070922 - 09 December 2025

    Abstract Mango is a plant with high economic value in the agricultural industry; thus, it is necessary to maximize the productivity performance of the mango plant, which can be done by implementing artificial intelligence. In this study, a lightweight object detection model will be developed that can detect mango plant conditions based on disease potential, so that it becomes an early detection warning system that has an impact on increasing agricultural productivity. The proposed lightweight model integrates YOLOv7-Tiny and the proposed modules, namely the C2S module. The C2S module consists of three sub-modules such as the… More >

  • Open Access

    ARTICLE

    Software Defect Prediction Based on Semantic Views of Metrics: Clustering Analysis and Model Performance Analysis

    Baishun Zhou1,2, Haijiao Zhao3, Yuxin Wen2, Gangyi Ding1, Ying Xing3,*, Xinyang Lin4, Lei Xiao5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5201-5221, 2025, DOI:10.32604/cmc.2025.065726 - 30 July 2025

    Abstract In recent years, with the rapid development of software systems, the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics. Defect prediction methods based on software metric elements highly rely on software metric data. However, redundant software metric data is not conducive to efficient defect prediction, posing severe challenges to current software defect prediction tasks. To address these issues, this paper focuses on the rational clustering of software metric data. Firstly, multiple software projects are evaluated to determine the preset number… More >

  • Open Access

    ARTICLE

    Performance vs. Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems

    Sarah M. Kamel1,*, Mai A. Fadel2, Lamiaa Elrefaei1,3, Shimaa I. Hassan1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 373-411, 2025, DOI:10.32604/cmes.2025.062837 - 11 April 2025

    Abstract Visual question answering (VQA) is a multimodal task, involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer. In this paper, we propose a VQA system intended to answer yes/no questions about real-world images, in Arabic. To support a robust VQA system, we work in two directions: (1) Using deep neural networks to semantically represent the given image and question in a fine-grained manner, namely ResNet-152 and Gated Recurrent Units (GRU). (2) Studying the role of the utilized multimodal bilinear… More >

  • Open Access

    ARTICLE

    Combined Effect of Concept Drift and Class Imbalance on Model Performance During Stream Classification

    Abdul Sattar Palli1,6,*, Jafreezal Jaafar1,2, Manzoor Ahmed Hashmani1,3, Heitor Murilo Gomes4,5, Aeshah Alsughayyir7, Abdul Rehman Gilal1

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1827-1845, 2023, DOI:10.32604/cmc.2023.033934 - 06 February 2023

    Abstract Every application in a smart city environment like the smart grid, health monitoring, security, and surveillance generates non-stationary data streams. Due to such nature, the statistical properties of data changes over time, leading to class imbalance and concept drift issues. Both these issues cause model performance degradation. Most of the current work has been focused on developing an ensemble strategy by training a new classifier on the latest data to resolve the issue. These techniques suffer while training the new classifier if the data is imbalanced. Also, the class imbalance ratio may change greatly from… More >

  • Open Access

    ARTICLE

    Detection of COVID-19 and Pneumonia Using Deep Convolutional Neural Network

    Md. Saiful Islam, Shuvo Jyoti Das, Md. Riajul Alam Khan, Sifat Momen*, Nabeel Mohammed

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 519-534, 2023, DOI:10.32604/csse.2023.025282 - 01 June 2022

    Abstract COVID-19 has created a panic all around the globe. It is a contagious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), originated from Wuhan in December 2019 and spread quickly all over the world. The healthcare sector of the world is facing great challenges tackling COVID cases. One of the problems many have witnessed is the misdiagnosis of COVID-19 cases with that of healthy and pneumonia cases. In this article, we propose a deep Convolutional Neural Network (CNN) based approach to detect COVID+ (i.e., patients with COVID-19), pneumonia and normal cases, from the… More >

Displaying 1-10 on page 1 of 5. Per Page