Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (246)
  • Open Access

    ARTICLE

    Numerical Modelling of Oblique Wave Interaction with Dual Curved-LEG Pontoon Floating Breakwaters

    Jothika Palanisamy1, Chandru Muthusamy1,*, Higinio Ramos2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2017-2038, 2025, DOI:10.32604/cmes.2025.071958 - 26 November 2025

    Abstract This study investigates the performance of dual curved-leg pontoon floating breakwaters in finite water depth under the assumption of linear wave theory. The analysis is carried out for four different models of curved-leg geometries, which are combinations of convex and concave shapes. The models are classified as follows. Model-1: Seaside and leeside face concave, Model-2: Seaside and leeside face convex, Model-3: Seaside face convex and leeside face concave, and Model-4: Seaside face concave and leeside face convex. The Boundary Element Method is utilized in order to find a solution to the associated boundary value problem.… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Sizing and Allocation of Distributed Power Generation: Optimization Techniques, Global Insights, and Smart Grid Implications

    Abdullrahman A. Al-Shamma’a1, Hassan M. Hussein Farh1,*, Ridwan Taiwo2, Al-Wesabi Ibrahim3, Abdulrhman Alshaabani1, Saad Mekhilef 4, Mohamed A. Mohamed5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1303-1347, 2025, DOI:10.32604/cmes.2025.071302 - 26 November 2025

    Abstract Optimal sizing and allocation of distributed generators (DGs) have become essential computational challenges in improving the performance, efficiency, and reliability of electrical distribution networks. Despite extensive research, existing approaches often face algorithmic limitations such as slow convergence, premature stagnation in local minima, or suboptimal accuracy in determining optimal DG placement and capacity. This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement. It integrates both quantitative and qualitative analyses of the scholarly landscape, mapping influential research domains, co-authorship structures, the More >

  • Open Access

    REVIEW

    3D LiDAR-Based Techniques and Cost-Effective Measures for Precision Agriculture: A Review

    Mukesh Kumar Verma1,2,*, Manohar Yadav1

    Revue Internationale de Géomatique, Vol.34, pp. 855-879, 2025, DOI:10.32604/rig.2025.069914 - 17 November 2025

    Abstract Precision Agriculture (PA) is revolutionizing modern farming by leveraging remote sensing (RS) technologies for continuous, non-destructive crop monitoring. This review comprehensively explores RS systems categorized by platform—terrestrial, airborne, and space-borne—and evaluates the role of multi-sensor fusion in addressing the spatial and temporal complexity of agricultural environments. Emphasis is placed on data from LiDAR, GNSS, cameras, and radar, alongside derived metrics such as plant height, projected leaf area, and biomass. The study also highlights the significance of data processing methods, particularly machine learning (ML) and deep learning (DL), in extracting actionable insights from large datasets. By More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Investigation on the Nonlinear Deformation of Flax Fibre Reinforced Composites Based on the Evolution of Microstructures

    Qian Li*, Jiali Zhou, Yan Li*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.012234

    Abstract Plant fibres are emerging as sustainable composite reinforcements. Compared to synthetic fibres, the hierarchical and twisted structure of plant fibres may produce microfibril angle (MFA) reorientation and untwisting time-varying behaviors after loading and consequently decide the mechanical response of plant fibre reinforced composites (PFRCs) in macro-scale. Existing theories, assuming homogeneous fibres, cannot accurately describe the multi-scale coupling nonlinear deformations of PFRCs. Based on this, a multi-scale analysis method on the nonlinear tensile responses of flax fibre reinforced composites (FFRCs) was proposed, focusing on the effect of the evolution of MFA in micro-scale and twist angle… More >

  • Open Access

    ARTICLE

    Numerical Modelling of CO2 Plume Evolution and Dissolution in a Stratified Saline Aquifer

    Bohao Wu*, Xiuqi Zhang, Haoheng Liu, Yulong Ji

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2359-2387, 2025, DOI:10.32604/fdmp.2025.067651 - 30 October 2025

    Abstract Geological sequestration of carbon dioxide (CO2) entails the long-term storage of captured emissions from CCUS (Carbon Capture, Utilization, and Storage) facilities in deep saline aquifers to mitigate greenhouse gas accumulation. Among various trapping mechanisms, dissolution trapping is particularly effective in enhancing storage security. However, the stratified structure of saline aquifers plays a crucial role in controlling the efficiency of CO2 dissolution into the resident brine. In this study, a two-dimensional numerical model of a stratified saline aquifer is developed, integrating both two-phase flow and mass transfer dynamics. The model captures the temporal evolution of gas saturation,… More >

  • Open Access

    PROCEEDINGS

    Strengthening Mechanism and Deformation Behavior of Multi-Principal Element Alloys Using Multiscale Modelling and Simulation

    Weizheng Lu, Shuo Wang, Yang Chen, Jia Li*, Qihong Fang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.010711

    Abstract The multi-principal elemental alloys (MPEAs) exhibit excellent combinations of mechanical properties and radiation-resistant, are considered potential candidates for aerospace industries and advanced reactors. However, the quantitative contribution of microstructure on the strengthening mechanism remains challenging at the micro-scale, which greatly limits the long-term application. To address this, we developed a hierarchical multiscale simulation framework that covers potential physical mechanisms to explore the hardening effects of chemical short-range order (CSRO) and irradiation defects in MPEA. Firstly, by combining atomic simulation, discrete dislocation dynamics, and crystal plasticity finite element method, a hierarchical cross-scale model covering heterostructure lattice… More >

  • Open Access

    ARTICLE

    Robust Multi-Label Cartoon Character Classification on the Novel Kral Sakir Dataset Using Deep Learning Techniques

    Candan Tumer1, Erdal Guvenoglu2, Volkan Tunali3,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5135-5158, 2025, DOI:10.32604/cmc.2025.067840 - 23 October 2025

    Abstract Automated cartoon character recognition is crucial for applications in content indexing, filtering, and copyright protection, yet it faces a significant challenge in animated media due to high intra-class visual variability, where characters frequently alter their appearance. To address this problem, we introduce the novel Kral Sakir dataset, a public benchmark of 16,725 images specifically curated for the task of multi-label cartoon character classification under these varied conditions. This paper conducts a comprehensive benchmark study, evaluating the performance of state-of-the-art pretrained Convolutional Neural Networks (CNNs), including DenseNet, ResNet, and VGG, against a custom baseline model trained More >

  • Open Access

    ARTICLE

    A Simple and Robust Mesh Refinement Implementation in Abaqus for Phase Field Modelling of Brittle Fracture

    Anshul Pandey, Sachin Kumar*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3251-3286, 2025, DOI:10.32604/cmes.2025.067858 - 30 September 2025

    Abstract The phase field model can coherently address the relatively complex fracture phenomenon, such as crack nucleation, branching, deflection, etc. The model has been extensively implemented in the finite element package Abaqus to solve brittle fracture problems in recent studies. However, accurate numerical analysis typically requires fine meshes to model the evolving crack path effectively. A broad region must be discretized without prior knowledge of the crack path, further augmenting the computational expenses. In this proposed work, we present an automated framework utilizing a posteriori error-indicator (MISESERI) to demarcate and sufficiently refine the mesh along the… More >

  • Open Access

    ARTICLE

    Prediction of Water Uptake Percentage of Nanoclay-Modified Glass Fiber/Epoxy Composites Using Artificial Neural Network Modelling

    Ashwini Bhat1, Nagaraj N. Katagi1, M. C. Gowrishankar2, Manjunath Shettar2,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2715-2728, 2025, DOI:10.32604/cmc.2025.069842 - 23 September 2025

    Abstract This research explores the water uptake behavior of glass fiber/epoxy composites filled with nanoclay and establishes an Artificial Neural Network (ANN) to predict water uptake percentage from experimental parameters. Composite laminates are fabricated with varying glass fiber and nanoclay contents. Water absorption is evaluated for 70 days of immersion following ASTM D570-98 standards. The inclusion of nanoclay reduces water uptake by creating a tortuous path for moisture diffusion due to its high aspect ratio and platelet morphology, thereby enhancing the composite’s barrier properties. The ANN model is developed with a 3–4–1 feedforward structure and learned… More >

  • Open Access

    REVIEW

    Seamless Multisource Topo-Bathymetric Elevation Modelling for River Basins: A Review of UAV and USV Integration Techniques

    Kelvin Kang Wee Tang1,*, Muhammad Hafiz Mohd Yatim1, Norhadija Darwin2, Wan Anom Wan Aris1, Sim Ching Yen3, Nurfazira Mohamed Fadil3

    Revue Internationale de Géomatique, Vol.34, pp. 587-602, 2025, DOI:10.32604/rig.2025.065583 - 06 August 2025

    Abstract The integration of Unmanned Aerial Vehicles (UAVs) and Uncrewed Surface Vehicles (USVs) has revolutionized topographic and bathymetric mapping, significantly enhancing the accuracy and efficiency of geospatial data acquisition processes. This innovative approach synergistically combines terrestrial data collected by UAVs with underwater data obtained through USVs, culminating in the creation of unified high-resolution Digital Elevation Models (DEMs) of the river basin region represents a vital step toward understanding the dynamic interactions between land and water bodies. Hence, the seamless Topo-Bathymetric Elevation Model offers a detailed perspective of the river system, supporting informed decision-making in addressing sediment… More >

Displaying 1-10 on page 1 of 246. Per Page