Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (213)
  • Open Access

    ARTICLE

    Topic Modelling and Sentiment Analysis on YouTube Sustainable Fashion Comments

    Hsu-Hua Lee, Minh T. N. Nguyen*

    Journal of New Media, Vol.5, No.1, pp. 65-80, 2023, DOI:10.32604/jnm.2023.045792

    Abstract YouTube videos on sustainable fashion enable the public to gain basic knowledge about this concept. In this paper, we analyse user comments on YouTube videos that contain sustainable fashion content. The paper’s main objective is to help content creators and business managers effectively understand the perspectives of viewers, thus improving video quality and developing business. We analysed a dataset of 17,357 comments collected from 15 sustainable fashion YouTube videos. First, we use Latent Dirichlet Allocation (LDA), a topic modelling technique, to discover the abstract topics. In addition, we use two approaches to rank these topics: More >

  • Open Access

    ARTICLE

    MODELLING AND SIMULATION OF AU-WATER NANOFLUID FLOW IN WAVY CHANNELS

    Suripeddi Srinivasa , Akshay Guptab,*, Ashish Kumar Kandoib

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-12, 2014, DOI:10.5098/hmt.5.21

    Abstract The present work deals with the flow and thermal analysis of nanofluid in the wavy channels. The governing flow equations are solved numerically using CFD package assuming single phase approach. To study the effect of the concentration and size variation of the nanoparticle, the concentration and size are varied from 0% - 5% and 25 nm - 100 nm respectively over the Reynolds number range of 250-1500 for Au-water nanofluid. The effect on heat transfer enhancement because of corrugation of wavy channel is analyzed on four different shapes (sinusoidal, triangular, trapezoidal and square) channels. The More >

  • Open Access

    ARTICLE

    CFD MODELLING AND VALIDATION OF COMBUSTION IN DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELLED WITH JATROPHA OIL BLENDS WITH DIESEL

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-6, 2014, DOI:10.5098/hmt.5.7

    Abstract This paper presents a pre-mixed combustion model for diesel and Jatropha oil blends combustion studies. Jatropha oil blends are considered as a mixture of diesel and Jatropha oil. CFD package, FLUENT 6.3 is used for modeling the complex combustion phenomenon in compression ignition engine. The experiments are carried out on a single cylinder, four strokes, water cooled direct injection compression ignition engine at compression ratio of 17.5 at full load condition at constant speed of 1500 rpm fuelled with diesel and jatropha oil blends with diesel. The numerical model is solved by considering pressure based,… More >

  • Open Access

    ARTICLE

    Modelling and Performance Analysis of Visible Light Communication System in Industrial Implementations

    Mohammed S. M. Gismalla1,2, Asrul I. Azmi1,2, Mohd R. Salim1,2, Farabi Iqbal1,2, Mohammad F. L. Abdullah3, Mosab Hamdan4,5, Muzaffar Hamzah4,*, Abu Sahmah M. Supa’at1,2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2189-2204, 2023, DOI:10.32604/cmc.2023.035250

    Abstract Visible light communication (VLC) has a paramount role in industrial implementations, especially for better energy efficiency, high speed-data rates, and low susceptibility to interference. However, since studies on VLC for industrial implementations are in scarcity, areas concerning illumination optimisation and communication performances demand further investigation. As such, this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances. The proposed model was evaluated based on various semi-angles at half power (SAAHP) and different height levels for several parameters, including received power, signal to noise ratio More >

  • Open Access

    ARTICLE

    MODELLING AND EXPERIMENTAL VALIDATION OF COMBUSTION IN STRAIGHT INOCULATION COMPRESSION IGNITION ENGINE FUELLED WITH DIESEL AND JATROPHA METHYL ESTER BLEND

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.11

    Abstract An incorporated arithmetical model has been urbanized and investigated for CFD replication of a solitary cylinder, four stroke, straight inoculation, compressed ignition diesel engine of 3.5 kW for in-cylinder combustion analysis and authenticated under engine simulations at full load functioning conditions with foundation fuel diesel and 10% JME (volume basis) blend with diesel at invariable speed of 1500 rpm. For advancing the exactness of the exertion, a number of sub models, such as species transport model explaining the actual biodiesel energy content and molecular structure as soon as fuel blend is initiated, spray break-up model, More >

  • Open Access

    ARTICLE

    UREA-WATER DROPLET PHASE CHANGE AND REACTION MODELLING: MULTI-COMPONENT EVAPORATION APPROACH

    Viraj S. Shirodkar*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.5

    Abstract Urea-water solution droplet evaporation is modelled using multi-component droplet evaporation approach. The heat and mass transfer process of a multi-component droplet is implemented in the Langrangian framework through a custom code in ANSYS-Fluent R15. The evaporation process is defined by a convection-diffusion controlled model which includes the effect of Stefan flow. A rapid mixing model assumption is used for the droplet internal physics. The code is tested on a single multi-component droplet and the predicted evaporation rates at different ambient temperatures are compared with the experimental data in the literature. The approach is used to More >

  • Open Access

    ARTICLE

    MODELLING OF PHASE CHANGE WITH NON-CONSTANT DENSITY USING XFEM AND A LAGRANGE MULTIPLIER

    Dave Martina,b,† , Hicham Chaoukia,b, Jean-Loup Roberta, Donald Zieglerc, Mario Fafarda,b

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-11, 2016, DOI:10.5098/hmt.7.40

    Abstract A two phase model for two-dimensional solidification problems with variable densities was developed by coupling the Stefan problem with the Stokes problem and applying a mass conserving velocity condition on the phase change interface. The extended finite element method (XFEM) was used to capture the strong discontinuity of the velocity and pressure as well as the jump in heat flux at the i nterface. The melting temperature and velocity condition were imposed on the interface using a Lagrange multiplier and the penalization method, respectively. The resulting formulations were then coupled using a fixed point iteration More >

  • Open Access

    ARTICLE

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

    Vitaliy Suvorov1,2,*, Olga Loboda2, Maria Balakina1, Igor Kulczycki2

    Congenital Heart Disease, Vol.18, No.5, pp. 491-505, 2023, DOI:10.32604/chd.2023.030583

    Abstract Background: Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes. The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case. Methods: We performed the prospective cohort study which included 29 children with congenital heart defects. The hearts and the great vessels were modeled and printed out. Measurements of the same cardiac areas were taken in the… More > Graphic Abstract

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

  • Open Access

    ARTICLE

    Analysis of Sub-Synchronous Oscillation of Virtual Synchronous Generator and Research on Suppression Strategy in Weak Grid

    Chongyang Zhao, Wei Chai, Beibei Rui, Lin Chen*

    Energy Engineering, Vol.120, No.11, pp. 2683-2705, 2023, DOI:10.32604/ee.2023.029620

    Abstract At present, the direct drive permanent magnet synchronous generator (DD-PMSG) grid connected system based on virtual synchronous generator (VSG) control will experience power oscillation at sub synchronous frequencies. The mechanism and characteristics of this new type of sub-synchronous interaction (SSI) are not yet clear, and the system cannot recover to steady state solely based on the characteristics of VSG itself. Especially when connected to a weak current network, oscillations are more pronounced, affecting the stability of the system. In severe cases, the system may trigger shutdown protection and be disconnected from the network. Existing research More >

  • Open Access

    ARTICLE

    Multi-Layer Deep Sparse Representation for Biological Slice Image Inpainting

    Haitao Hu1, Hongmei Ma2, Shuli Mei1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3813-3832, 2023, DOI:10.32604/cmc.2023.041416

    Abstract Biological slices are an effective tool for studying the physiological structure and evolution mechanism of biological systems. However, due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing, leads to problems such as difficulty in preparing slice images and breakage of slice images. Therefore, we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation, achieving the high-fidelity reconstruction of slice images. We further discussed the relationship between deep convolutional neural networks and sparse representation, ensuring the high-fidelity characteristic of… More >

Displaying 11-20 on page 2 of 213. Per Page