Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (384)
  • Open Access

    ARTICLE

    Simulation of Bubbly Flow using Different Turbulence Models

    K. Ibrahim1, W.A. El-Askary1,2, A. Balabel1, I.M. Sakr1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.1, pp. 79-104, 2012, DOI:10.3970/cmes.2012.085.079

    Abstract In the present paper, a numerical code has been developed with different turbulence models aiming at simulating turbulent bubbly flows in vertical circular pipes. The mass and momentum conservation equations are used to describe the motion of both phases (water/air). Because of the averaging process additional models are needed for the inter-phase momentum transfer and turbulence quantities for closure. The continuous phase (water) turbulence is represented using different turbulence models namely: two-equation k-ε, extended k-ε and shear-stress transport (SST) k-ω turbulence models which contains additional term to account for the effect of the dispersed phase (air) on the continuous phase… More >

  • Open Access

    ARTICLE

    Computations of a Compressible Turbulent Flow in a Rocket Motor-Chamber Configuration with Symmetric and Asymmetric Injection

    W.A. El-Askary1,2, A. Balabel2, S.M. El-Behery2, A. Hegab3

    CMES-Computer Modeling in Engineering & Sciences, Vol.82, No.1, pp. 29-54, 2011, DOI:10.32604/cmes.2011.082.029

    Abstract In the present paper, the characteristics of compressible turbulent flow in a porous channels subjected to either symmetric or asymmetric mass injection are numerically predicted. A numerical computer-program including different turbulence models has been developed by the present authors to investigate the considered flow. The numerical method is based on the control volume approach to solve the governing Reynolds-Averaged Navier-Stokes (RANS) equations. Turbulence modeling plays a significant role here, in light of the complex flow generated, so several popular engineering turbulence models with good track records are evaluated, including five different turbulence models. Numerical results with available experimental data showed… More >

  • Open Access

    ARTICLE

    A Stabilized Finite Element Formulation for Continuum Models of Traffic Flow

    Durgesh Vikram1, Sanjay Mittal2, Partha Chakroborty1

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 237-260, 2011, DOI:10.3970/cmes.2011.079.237

    Abstract A stabilized finite element formulation is presented to solve the governing equations for traffic flow. The flow is assumed to be one-dimensional. Both, PW-type (Payne-Whitham) 2-equation models and the LWR-type (Lighthill-Whitham-Richards) 1-equation models are considered. The SUPG (Streamline-Upwind/Petrov-Galerkin) and shock capturing stabilizations are utilized. These stabilizations are sufficient for the 1-equation models. However, an additional stabilization is necessary for the 2-equation models. For the first time, such a stabilization is proposed. It arises from the coupling between the two equations and is termed as IEPG (Inter-Equation/Petrov-Galerkin) stabilization. Two behavioral models are studied: Greenshields' (GS) and Greenberg's (GB) models. Numerical tests… More >

  • Open Access

    ARTICLE

    Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data

    Chun Yang1,2, Dalin Tang2, Satya Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.1, pp. 53-78, 2011, DOI:10.3970/cmes.2011.072.053

    Abstract Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing… More >

  • Open Access

    ARTICLE

    Assessment and Computational Improvement of Thermal Lattice Boltzmann Models Based Benchmark Computations

    R. Djebali1, M. El Ganaoui2

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.3, pp. 179-202, 2011, DOI:10.3970/cmes.2011.071.179

    Abstract The Lattice Boltzmann method (LBM) became, today, a powerful tool for simulating fluid flows. Its improvements for different applications and configurations offers more flexibility and results in several schemes such as in presence of external/internal forcing term. However, we look for the suitable model that gives correct informations, matches the hydrodynamic equations and preserves some features like coding easily, preserving computational cost, stability and accuracy. In the present work, high order incompressible models and equilibrium distribution functions for the advection-diffusion equations are analyzed. Boundary conditions, acceleration, stability and preconditioning with initial fields are underlined which permit to rigorously selecting two… More >

  • Open Access

    ARTICLE

    Equivalent One-Dimensional Spring-Dashpot System Representing Impedance Functions of Structural Systems with Non-Classical Damping

    Masato Saitoh1

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.3, pp. 211-238, 2010, DOI:10.3970/cmes.2010.067.211

    Abstract This paper describes the transformation of impedance functions in general structural systems with non-classical damping into a one-dimensional spring-dashpot system (1DSD). A transformation procedure based on complex modal analysis is proposed, where the impedance function is transformed into a 1DSD comprising units arranged in series. Each unit is a parallel system composed of a spring, a dashpot, and a unit having a spring and a dashpot arranged in series. Three application examples are presented to verify the applicability of the proposed procedure and the accuracy of the 1DSDs. The results indicate that the 1DSDs accurately simulate the impedance functions for… More >

  • Open Access

    ARTICLE

    Mean Densities in Dynamic MathematicalTwo-phase Flow Models

    J. Bonilla1, L.J. Yebra1, S. Dormido2

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.1, pp. 13-38, 2010, DOI:10.3970/cmes.2010.067.013

    Abstract This paper presents and discusses a mean densities method applied to a steam-water two-phase flow mathematical model which uses a finite volume method and a staggered grid for discretizing a rigid volume in control volumes, where the thermodynamic properties are calculated. This method is based on the concepts of uniform pressure among all the control volumes and mean density in each control volume, allowing smooth thermodynamic properties, hence avoiding discontinuity at phase boundaries. This method wipes out the chattering problem due to the continuous and differentiable modelling of density and its partial derivatives, which leads to faster simulations and increases… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Flow Models for Micro/Nano Fluidics

    Kazuhiko Suga1,2, Takahiko Ito1

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.3, pp. 223-242, 2010, DOI:10.3970/cmes.2010.063.223

    Abstract Flow passages in micro/nano-electro-mechanical systems (MEMS/ -NEMS) usually have complicated geometries. The present study thus discusses on the latest lattice Boltzmann methods (LBMs) for micro/nano fluidics to evaluate their applicability to micro/nano-flows in complex geometries. Since the flow regime is the continuum to the slip and transitional regime with a moderate Knudsen number (Kn), the LBMs presently focused on feature the wall boundary treatment and the relaxation-time for modeling such flow regimes. The discussed micro flow (µ-flow) LBMs are based on the Bhatnagar-Gross-Krook (BGK) model and the multiple relaxation-time (MRT) model. The presently chosen µ-flow BGK LBM (BGK-1 model) consists… More >

  • Open Access

    ARTICLE

    Topological Derivative-Based Optimization of Micro-Structures Considering Different Multi-Scale Models

    E.A. de Souza Neto1, S. Amstutz2, S.M. Giusti3, A.A. Novotny3

    CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.1, pp. 23-56, 2010, DOI:10.3970/cmes.2010.062.023

    Abstract A recently proposed algorithm for micro-structural optimization, based on the concept of topological derivative and a level-set domain representation, is applied to the synthesis of elastic and heat conducting bi-material micro-structures. The macroscopic properties are estimated by means of a family of multi-scale constitutive theories where the macroscopic strain and stress tensors (temperature gradient and heat flux vector in the heat conducting case) are defined as volume averages of their microscopic counterparts over a Representative Volume Element (RVE). Several finite element-based examples of micro-structural optimization are presented. Three multi-scale models, providing an upper and a lower bound for the macroscopic… More >

  • Open Access

    ARTICLE

    Effect of Patch Mechanical Properties on Right Ventricle Function Using MRI-Based Two-Layer AnisotropicModels of Human Right and Left Ventricles

    Dalin Tang1, Chun Yang1,2, Tal Geva3,4, Glenn Gaudette4, and Pedro J. del Nido5

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.2, pp. 113-130, 2010, DOI:10.3970/cmes.2010.056.113

    Abstract Right and left ventricle (RV/LV) combination models with three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties were introduced to evaluate the effects of patch materials on RV function. A material-stiffening approach was used to model active heart contraction. Cardiac magnetic resonance (CMR) imaging was performed to acquire patient-specific ventricular geometries and cardiac motion from a patient with severe RV dilatation due to pulmonary regurgitation needing RV remodeling and pulmonary valve replacement operation. Computational models were constructed and solved to obtain RV stroke volume, ejection fraction, patch area variations,… More >

Displaying 351-360 on page 36 of 384. Per Page