Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    ARTICLE

    Molecular Dynamics Simulation of the Interaction between R1336mzz(Z) and POE Lubricants

    Haoyuan Jing1, Zhongye Wu1,*, Xiaoyang Jiang1, Qingfen Ma2

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 463-478, 2025, DOI:10.32604/fhmt.2025.061750 - 25 April 2025

    Abstract In the organic Rankine cycle, the refrigerant inevitably interacts with the lubricating oil. This study investigates the interaction mechanism between the fourth-generation refrigerant R1336mzz(Z) and the polyol ester (POE) which is a representative component of the lubricating oil, using molecular dynamics simulations. The research focuses on pentaerythritol ester (PEC) with medium to long chain lengths, specifically PEC9. Relevant parameters such as solubility parameters, diffusion coefficients, binding energies, and radial distribution functions were calculated to elucidate the interaction dynamics. The variation in solubility parameters suggests that the miscibility of PEC9 and R1336mzz(Z) diminishes as the number More > Graphic Abstract

    Molecular Dynamics Simulation of the Interaction between R1336mzz(Z) and POE Lubricants

  • Open Access

    ARTICLE

    Molecular Dynamics Simulation of Bubble Arrangement and Cavitation Number Influence on Collapse Characteristics

    Shuaijie Jiang1, Zechen Zhou1, Xiuli Wang1, Wei Xu2, Wenzhuo Guo1, Qingjiang Xiang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 471-491, 2025, DOI:10.32604/fdmp.2025.059878 - 01 April 2025

    Abstract In nature, cavitation bubbles typically appear in clusters, engaging in interactions that create a variety of dynamic motion patterns. To better understand the behavior of multiple bubble collapses and the mechanisms of inter-bubble interaction, this study employs molecular dynamics simulation combined with a coarse-grained force field. By focusing on collapse morphology, local density, and pressure, it elucidates how the number and arrangement of bubbles influence the collapse process. The mechanisms behind inter-bubble interactions are also considered. The findings indicate that the collapse speed of unbounded bubbles located in lateral regions is greater than that of More >

  • Open Access

    ARTICLE

    Application of Deep-Learning Potential in Simulating the Structural and Physical Characteristics of Platinum

    Keyuan Chen1, Xingkao Zhang1, Li Ma1, Jueyi Ye1, Qi Qiu1, Haoxiang Zhang1, Ju Rong1,*, Yudong Sui1,*, Xiaohua Yu1,2, Jing Feng1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 685-700, 2025, DOI:10.32604/cmc.2025.060713 - 26 March 2025

    Abstract The deep potential (DP) is an innovative approach based on deep learning that uses ab initio calculation data derived from density functional theory (DFT), to create high-accuracy potential functions for various materials. Platinum (Pt) is a rare metal with significant potential in energy and catalytic applications, However, there are challenges in accurately capturing its physical properties due to high experimental costs and the limitations of traditional empirical methods. This study employs deep learning methods to construct high-precision potential models for single-element systems of Pt and validates their predictive performance in complex environments. The newly developed DP… More >

  • Open Access

    ARTICLE

    Dibenzo [a, c] phenazin-11-yl(phenyl) methanone (SBLJ23), a novel selective inhibitor targeting JAK2V617F mutation in myeloproliferative neoplasms

    MOHAMMAD ABOHASSAN, MESFER MOHAMMAD AL SHAHRANI, SARAH KHALED ALOUDA, PRASANNA RAJAGOPALAN*

    Oncology Research, Vol.33, No.3, pp. 675-685, 2025, DOI:10.32604/or.2024.056256 - 28 February 2025

    Abstract Background: The JAK2V617F mutation plays a crucial part in the pathogenesis of myeloproliferative neoplasms (MPN), which includes polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) leading to aberrant proliferation and survival of hematopoietic cells. Alongside the challenges of drug resistance and side effects, identifying novel compounds that selectively target JAK2V617F could provide more effective and safer therapeutic options for patients with MPNs. Materials and Methods: We employed computational approaches like high-throughput virtual screening, molecular dynamics simulations (MDS), and binding free energy calculations to identify inhibitors targeting wild and mutant JAK2 kinases. JAK2V617F positive HEL, wild… More >

  • Open Access

    ARTICLE

    SBL-JP-0004: A promising dual inhibitor of JAK2 and PI3KCD against gastric cancer

    HASSAN M. OTIFI*

    Oncology Research, Vol.33, No.1, pp. 235-243, 2025, DOI:10.32604/or.2024.055677 - 20 December 2024

    Abstract Background: Gastric cancer (GC) remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies. The phosphoinositide 3-kinase and PI3K and Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathways play pivotal roles in GC progression, making them attractive targets for therapeutic interventions. Methods: This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases. KATOIII and SNU-5 GC cells were used for in vitro evaluation. Results: SBL-JP-0004 exhibited a robust binding affinity for… More >

  • Open Access

    ARTICLE

    Mechanical Properties of Copper with Dendritic Silver Inclusions: Insights from Molecular Dynamics Simulations

    Nicolás Amigo*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3665-3678, 2024, DOI:10.32604/cmc.2024.059895 - 19 December 2024

    Abstract This study explores the mechanical behavior of single-crystal copper with silver inclusions, focusing on the effects of dendritic and spherical geometries using molecular dynamics simulations. Uniaxial tensile tests reveal that dendritic inclusions lead to an earlier onset of plasticity due to the presence of high-strain regions at the complex inclusion/matrix interfaces, whereas spherical inclusions exhibit delayed plasticity associated with their symmetric geometry and homogeneous strain distribution. During the plastic regime, the dislocation density is primarily influenced by the volume fraction of silver inclusions rather than their shape, with spherical inclusions showing the highest densities due… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Study on Hydrothermal Response of PNIPAM: From Single Chain to Cross-Linked Polymer

    Xianzhi Chen1, Dong Niu1,*, Hongtao Gao1, Mu Du2,3,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1743-1760, 2024, DOI:10.32604/fhmt.2024.058274 - 19 December 2024

    Abstract Thermosensitive hydrogel can integrate vapor molecular capture, in-situ liquefaction, and thermal-induced water release for freshwater capture. This study aimed to examine the dynamic behavior of poly (N-isopropylacrylamide) (PNIPAM) single chain and cross-linking thermosensitive hydrogel through molecular dynamics simulation. Specifically, the impact of lower critical solution temperature (LCST) on the conformation of polymer chain and the interaction between water and polymer chain were also investigated. The polymer chain conformation underwent a transition from coil to globule when the temperature exceeded the LCST, indicating the temperature responsiveness of PNIPAM. Additionally, thermosensitive hydrogel samples with different cross-linking degrees (DOC) More > Graphic Abstract

    Molecular Dynamics Study on Hydrothermal Response of PNIPAM: From Single Chain to Cross-Linked Polymer

  • Open Access

    PROCEEDINGS

    Theoretical Study on Hydrogen Diffusion Influenced Screw Dislocation Motion in Body-Centered Cubic Iron

    Jiaqin Xu1, Shuhei Shinzato1, Shihao Zhang1, Fan-Shun Meng1, Shigenobu Ogata1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011814

    Abstract Hydrogen has the potential to be the clean energy solution to achieve the sustainable development goals (SDGs). However, from preparation to utilization, the hydrogen embrittlement can not be neglected. Hydrogen embrittlement occurs as a result of hydrogen affecting dislocations motion and cracks opening. Dislocation motion in hydrogen environment has not been clarified although several mechanisms have been proposed, including the hydrogen enhanced decohesion (HEDE), the hydrogen enhanced macroscopic ductility (HEMP), the hydrogen enhanced local plastic model (HELP), etc. It is essential to comprehend the underlying hydrogen-dislocation interactions that cause embrittlement. Also, dynamics of dislocation motion… More >

  • Open Access

    PROCEEDINGS

    Collision-Induced Adhesion Behavior and Mechanism for Metal Particle and Graphene

    Haitao Hei1, Jian Wang1, Yonggang Zheng1, Hongfei Ye1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011298

    Abstract Micro- and nano-scale collisions are widely involved in molecular movement, drug delivery, the actuation of micro-nano devices, etc. They often exhibit extraordinary behaviour relative to the common macroscopic collisions. A deep understanding on the scale reduction-induced novel collision phenomenon and the related mechanism is rather crucial. In this work, the comprehensive impact behaviour of metal projectiles on graphene is investigated on the basis of molecular dynamics simulations. It is found that besides the common penetration and rebound behaviours, the impacting metal projectile can also be captured by the ultrasoft two-dimensional materials, i.e., the adhesion behaviour.… More >

  • Open Access

    ARTICLE

    Shear Deformation of DLC Based on Molecular Dynamics Simulation and Machine Learning

    Chaofan Yao, Huanhuan Cao, Zhanyuan Xu*, Lichun Bai*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2107-2119, 2024, DOI:10.32604/cmes.2024.055743 - 31 October 2024

    Abstract Shear deformation mechanisms of diamond-like carbon (DLC) are commonly unclear since its thickness of several micrometers limits the detailed analysis of its microstructural evolution and mechanical performance, which further influences the improvement of the friction and wear performance of DLC. This study aims to investigate this issue utilizing molecular dynamics simulation and machine learning (ML) techniques. It is indicated that the changes in the mechanical properties of DLC are mainly due to the expansion and reduction of sp3 networks, causing the stick-slip patterns in shear force. In addition, cluster analysis showed that the sp2-sp3 transitions arise… More >

Displaying 1-10 on page 1 of 61. Per Page