Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Molecular Dynamics Simulation of Interface Properties between Water-Based Inorganic Zinc Silicate Coating Modified by Organosilicone and Iron Substrate

    Hengjiao Gao1, Yuqing Xiong1,*, Kaifeng Zhang1, Shengzhu Cao1, Mingtai Hu1, Yi Li1, Ping Zhang2, Xiaoli Liu3

    Journal of Renewable Materials, Vol.11, No.4, pp. 1715-1729, 2023, DOI:10.32604/jrm.2022.024023

    Abstract The interface properties of Fe(101)/zinc silicate modified by organo-siloxane (KH-570) was studied by using the method of molecular dynamics simulation. By calculating the temperature and energy fluctuation of equilibrium state, equilibrium concentration distribution, MSD of layer and different groups, and interaction energy of two interface models, the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale. It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage (t < 20 ps). It can… More > Graphic Abstract

    Molecular Dynamics Simulation of Interface Properties between Water-Based Inorganic Zinc Silicate Coating Modified by Organosilicone and Iron Substrate

  • Open Access

    ARTICLE

    Investigation on the Mechanical Properties of Polycrystalline Mg Using Molecular Dynamics Simulation

    Xiaoxia Liu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 919-927, 2022, DOI:10.32604/cmes.2022.017756

    Abstract Magnesium (Mg) and its composites have been widely used in different fields, but the mechanical properties and deformation mechanisms of polycrystalline Mg (polyMg) at the atomic scale are poorly understood. In this paper, the effects of grain size, temperature, and strain rate on the tensile properties of polyMg are explored and discussed by the Molecular dynamics (MD) simulation method. The calculated results showed that there exists a critical grain size of 10 nm for the mechanical properties of polyMg. The flow stress decreases with the increase of grain size if the average grain size is larger than 10 nm, which… More >

  • Open Access

    ARTICLE

    Mechanical Properties of All MoS2 Monolayer Heterostructures: Crack Propagation and Existing Notch Study

    Reza Khademi Zahedi1, Naif Alajlan2, Hooman Khademi Zahedi3, Timon Rabczuk2,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4635-4655, 2022, DOI:10.32604/cmc.2022.017682

    Abstract The outstanding thermal, optical, electrical and mechanical properties of molybdenum disolphide (MoS2) heterostructures make them exceptional candidates for an extensive area of applications. Nevertheless, despite considerable technological and academic interest, there is presently a few information regarding the mechanical properties of these novel two-dimensional (2D) materials in the presence of the defects. In this manuscript, we performed extensive molecular dynamics simulations on pre-cracked and pre-notched all-molybdenum disolphide (MoS2) heterostructure systems using ReaxFF force field. Therefore, we study the influence of several central-crack lengths and notch diameters on the mechanical response of 2H phase, 1T phase and composite 2H /1T MoS2More >

  • Open Access

    ARTICLE

    Performance Evaluation of a Novel and Effective Water-Soluble Aldehydes as Corrosion Inhibitor for Carbon Steel in Aggressive Hydrochloric Medium

    Yun Wang1, Tiantian Wang2, Bei Wang1, Wei Chang3, Jiangli Cao1, Lihua Hu3, Minxu Lu1, Lei Zhang1,*

    Journal of Renewable Materials, Vol.10, No.2, pp. 301-327, 2022, DOI:10.32604/jrm.2021.015518

    Abstract A novel and effective water-soluble aldehydes (β-HA) as corrosion inhibitor was synthesized for N80 steel corrosion in 15% HCl solution, and the corrosion inhibition performance was evaluated by using weight loss, electrochemical measurements, scanning electron microscope (SEM), quantum chemical calculation and molecular dynamics simulation (MDS). The results show that synthesized β-HA showed excellent corrosion performance compared with MHB and PE for carbon steel in 15% HCl solution compared with MHB and PE, and the inhibition efficiency increased with increasing concentration of the inhibitor. The inhibition efficiency of β-HA at 8 mmol/L reached the maximum value 94.08%. The inhibitor acted as… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene

    Yue Jia1, Chun Li1, *, Jinwu Jiang2, Ning Wei3, Yang Chen4, Yongjie Jessica Zhang5

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 813-823, 2020, DOI:10.32604/cmc.2020.07801

    Abstract The present work carries out molecular dynamics simulations to compute the thermal conductivity of the borophene nanoribbon and the borophene nanotube using the Muller-Plathe approach. We investigate the thermal conductivity of the armchair and zigzag borophenes, and show the strong anisotropic thermal conductivity property of borophene. We compare results of the borophene nanoribbon and the borophene nanotube, and find the thermal conductivity of the borophene is orientation dependent. The thermal conductivity of the borophene does not vary as changing the width of the borophene nanoribbon and the perimeter of the borophene nanotube. In addition, the thermal conductivity of the borophene… More >

  • Open Access

    ARTICLE

    Mechanical Strength and Structural Basis of β2 Integrin to Mediate Neutrophil Accumulation on Liver Sinusoidal Endothelial Cells: A Study Using Atomic Force Microscopy and Molecular Dynamics Simulations

    Ning Li1, 2, 3, Xiao Zhang1, 2, Peiwen Li1, 2, Hao Yang1, 2, Chunfang Tong1, 2, Shouqin Lü1, 2, Yan Zhang1, 2, Zhiyi Ye3, Jun Pan3, *, Mian Long1, 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 263-279, 2018, DOI:10.31614/cmes.2018.04079

    Abstract Neutrophil (PMN) accumulation on liver sinusoidal endothelial cells (LSECs) is crucial to pathogen clearance and tissue damage in the liver sinusoids and controlled by a series of adhesion molecules expressed on the surface of PMNs and LSECs. The role of lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1) in this process is still contentious. Here we compared the dynamic force spectra of the binding of β2 integrin to intercellular adhesion molecule-1 (ICAM-1) on LSECs using atomic force microscopy (AFM) and performed free and steered molecular dynamics (MD) simulations to analyze their structural bases of LFA-1- or Mac-1-I-domain and ICAM-1-D1 or… More >

  • Open Access

    ABSTRACT

    Molecular dynamics simulations of the nano-indentation for aluminum and copper

    Xiaozhi Tang, Yafang Guo, Yu Gao

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.1, pp. 25-26, 2011, DOI:10.3970/icces.2011.020.025

    Abstract Atomistic simulations were performed to study the nano-indentation for two kinds of FCC metals, aluminum and copper. Two different deformation mechanisms were observed in our simulation under exactly the same simulation condition. An embedded atom method potential was employed for copper and a generalized form of EAM potential due to Finnis and Sinclair for aluminum. In the simulation model, the substrate was constructed with 78408 atoms in an 8I?*40I?*60I? cell, here I? means the lattice constant. The indenter was modeled by a cubic with its side length of 8a.During the simulation, the period boundary condition was applied to the (1… More >

  • Open Access

    ABSTRACT

    Huge-scale molecular dynamics simulation of gas-liquid two-phase flow

    H. Watanabe, M. Suzuki, N. Ito

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 49-50, 2011, DOI:10.3970/icces.2011.018.049

    Abstract Gas-liquid two-phase flow is a system containing gas and liquid phase. While the gas-liquid two-phase flow is important for applications such as power plants and pump cavitations, it is difficult to study gas-liquid multiphase flow theoretically or numerically since it is multi-scale and multi-physics system involving not only flow but also phase transitions. In order to overcome the difficulties, we study the two-phase flow with full particle simulations. In the full-particle simulation, phase boundaries create and annihilate spontaneously, and therefore, multi-physics phenomena are naturally simulated. We developed a parallel molecular dynamics (MD) simulation code which is scalable up to ten… More >

  • Open Access

    ABSTRACT

    Petascale Molecular Dynamics Simulations of Photo-mechano-chemistry

    Aiichiro Nakano, Rajiv K. Kalia, Priya Vashishta

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.4, pp. 125-126, 2011, DOI:10.3970/icces.2011.016.125

    Abstract We have developed a metascalable (or "design once, scale on new architectures") parallelization scheme to perform large spatiotemporal-scale molecular dynamics (MD) simulations of materials on peta-to-exaflops computers based on embedded divide-and-conquer algorithms. The scheme has achieved parallel efficiency well over 0.95 on 212,992 IBM BlueGene/L processors for 218 billion-atom MD and 1.68 trillion electronic degrees-of-freedom quantum-mechanical MD in the framework of density functional theory. Simulation results reveal intricate interplay between photoexcitation, mechanics, flow, and chemical reactions at the nanoscale. Specifically, we will discuss atomistic mechanisms of: (1) mechanically enhanced reaction kinetics in nanobubbles and nanojets; (2) rapid hydrogen production from… More >

  • Open Access

    ABSTRACT

    Mechanism study of TiO2 nanowire tensile behaviors via molecular dynamics simulations

    L. Dai1, V.B.C. Tan1,2, C.H. Sow1,3, C.T. Lim1,2,4, W.C.D. Cheong5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.3, pp. 151-162, 2009, DOI:10.3970/icces.2009.009.151

    Abstract The mechanisms governing the tensile response of TiO2 nanowires were studied by molecular dynamics simulations. The free side surfaces of the nanowires were found to be undulating because atoms near the free surface were relaxed into a disordered state during thermodynamic equilibration. For wires below a threshold diameter of around 10 Å, this free surface effect extends throughout the entire wire, resulting in a complete lack of ordered structure. For thick nanowires, the core of the wire retains a crystalline structure. The thicker the wire, the larger the crystalline core and the more dominant is its effect on the tensile… More >

Displaying 11-20 on page 2 of 46. Per Page