Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Evaluation of Tubing Integrity with Rectangular Corrosion under Thermo-Chemical-Mechanical Coupling

    Yi Huang1,*, Ming Luo1, Zhujun Li1, Donglei Jiang1, Ping Xiao1, Mingyuan Yao2, Jia He2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1839-1860, 2025, DOI:10.32604/fdmp.2025.065459 - 12 September 2025

    Abstract This study presents a comprehensive mechanical analysis of P110S oil tubing subjected to thermal and chemical coupling effects, with particular attention to the presence of rectangular corrosion defects. Drawing on the material’s stress–strain constitutive behavior, thermal expansion coefficient, thermal conductivity, and electrochemical test data, the research incorporates geometric nonlinearities arising from large deformations induced by corrosion. A detailed three-dimensional finite element (FE) model of the corroded P110S tubing is developed to simulate its response under complex loading conditions. The proposed model is rigorously validated through full-scale burst experiments and analytical calculations based on theoretical formulations.… More >

  • Open Access

    ARTICLE

    Study on the Seepage Characteristics of Deep Tight Reservoirs Considering the Effects of Creep

    Yongfu Liu1, Haitao Zhao1, Xingliang Deng1, Baozhu Guan1, Jing Li2,*, Chengqiang Yang2, Guipeng Huang2

    Energy Engineering, Vol.122, No.5, pp. 1735-1754, 2025, DOI:10.32604/ee.2025.063706 - 25 April 2025

    Abstract The seepage characteristics of shale reservoirs are influenced not only by multi-field coupling effects such as stress field, temperature field, and seepage field but also exhibit evident creep characteristics during oil and gas exploitation. The complex fluid flow in such reservoirs is analyzed using a combination of theoretical modeling and numerical simulation. This study develops a comprehensive mathematical model that integrates the impact of creep on the seepage process, with consideration of factors including stress, strain, and time-dependent deformation. The model is validated through a series of numerical experiments, which demonstrate the significant influence of… More >

  • Open Access

    REVIEW

    Progress on Multi-Field Coupling Simulation Methods in Deep Strata Rock Breaking Analysis

    Baoping Zou1,2, Chenhao Pei1,*, Qizhi Chen1,2, Yansheng Deng1,2, Yongguo Chen1,2, Xu Long3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2457-2485, 2025, DOI:10.32604/cmes.2025.061429 - 03 March 2025

    Abstract The utilization of multi-field coupling simulation methods has become a pivotal approach for the investigation of intricate fracture behavior and interaction mechanisms of rock masses in deep strata. The high temperatures, pressures and complex geological environments of deep strata frequently result in the coupling of multiple physical fields, including mechanical, thermal and hydraulic fields, during the fracturing of rocks. This review initially presents an overview of the coupling mechanisms of these physical fields, thereby elucidating the interaction processes of mechanical, thermal, and hydraulic fields within rock masses. Secondly, an in-depth analysis of multi-field coupling is… More >

  • Open Access

    PROCEEDINGS

    The CDM-Based Modelling of the Multi-Field Coupling Delayed Hydride Cracking Behaviors of Zirconium Alloys

    Guochen Ding1, Jing Zhang1, Shurong Ding1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011410

    Abstract Zirconium alloys have high strength, high corrosion resistance and low neutron absorption cross section, widely served as the nuclear cladding tubes or some other structural components. During the storage stage of spent fuels or in the lower-temperature reactor-core locations, the hydrogen atoms within the zirconium alloy components would diffuse to the crack tip owing to stress concentration, possibly initiating delayed hydride cracking (DHC) and posing a potential threat to nuclear safety. In this study, the CDM (continuum damage mechanics)-based multi-field coupling computational models are developed, with the hydride-induced hardening and embrittlement, hydride orientation contributions and… More >

  • Open Access

    PROCEEDINGS

    Probing Multi-Field Couplings of Smart Materials at the Nanoscale

    Yunya Liu1,*, Dongliang Shan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012494

    Abstract Multi-field coupling affects the evolution of microstructures in smart materials, and also determines the macroscopic performance and application of smart materials. Scanning probe microscopy has emerged as one of the most powerful tools for characterizing and manipulating multi-field coupling responses of smart materials at the nanoscale. In this presentation, I will talk about some new experimental methods developed based on scanning probe microscopy and quantitative analysis, such as local excitation piezoresponse force microscopy method for mechanical properties of multiferroic nanostructures, the high fidelity direct measurement of local electrocaloric effect by scanning thermal microscopy, and the More >

  • Open Access

    ARTICLE

    Analysis of a Water-Inrush Disaster Caused by Coal Seam Subsidence Karst Collapse Column under the Action of Multi-Field Coupling in Taoyuan Coal Mine

    Zhibin Lin1, Boyang Zhang1,2,*, Jiaqi Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 311-330, 2021, DOI:10.32604/cmes.2021.011556 - 22 December 2020

    Abstract Minin-induced water inrush from a confined aquifer due to subsided floor karst collapse column (SKCC) is a type of serious disaster in the underground coal extraction. Karst collapse column (KCC) developed in a confined aquifer occurs widely throughout northern China. A water inrush disaster from SKCC occurred in Taoyuan coal mine on February 3, 2013. In order to analyze the effect of the KCC influence zone’s (KCCIZ) width and the entry driving distance of the water inrush through the fractured channels of the SKCC, the stress, seepage, and impact dynamics coupling equations were used to… More >

  • Open Access

    ABSTRACT

    Multi-Field Coupling Behaviors on Phonon and Thermal/Electrical Properties in Semiconductor Nanostructures

    Linli Zhu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.1, pp. 116-116, 2019, DOI:10.32604/icces.2019.05318

    Abstract Low-dimensional semiconductor structures such as nanofilms and nanowires have stimulated considerable interest due to their potential applications in nanoelectronic or nanomechanical devices. In this presentation, the effects of pre-stress field and surface stress on the phonon and thermal/electrical properties for semiconductor nanostructures are investigated theoretically. The continuum elastic model is employed to calculate the spatially confined phonon properties. The acoustoelastic effects and surface energy effects are taken into account in calculating the phonon properties of nanostructures. Since the thermal and electric properties are associated with phonon properties of semiconductors, the phonon thermal conductivity, electron-acoustic phonon… More >

  • Open Access

    ARTICLE

    Multi-field Coupling of Particulate Systems

    K. Han1, Y. T. Feng1, D. R. J. Owen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.59, No.1, pp. 1-30, 2010, DOI:10.3970/cmes.2010.059.001

    Abstract A computational framework is established for effective modelling of fluid-thermal-particle interactions. The numerical procedures comprise the Discrete Element Method for simulating particle dynamics; the Lattice Boltzmann Method for modelling the mass and velocity field of the fluid flow; and the Discrete Thermal Element Method and the Thermal Lattice Boltzmann Method for solving the temperature field. The coupling of the three fields is realised through hydrodynamic interaction force terms. Selected numerical examples are provided to illustrate the applicability of the proposed approach. More >

Displaying 1-10 on page 1 of 8. Per Page