Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture

    Zhiyong Deng1, Yanchen Ye2, Jiangling Guo1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069090 - 10 November 2025

    Abstract With the rapid expansion of drone applications, accurate detection of objects in aerial imagery has become crucial for intelligent transportation, urban management, and emergency rescue missions. However, existing methods face numerous challenges in practical deployment, including scale variation handling, feature degradation, and complex backgrounds. To address these issues, we propose Edge-enhanced and Detail-Capturing You Only Look Once (EHDC-YOLO), a novel framework for object detection in Unmanned Aerial Vehicle (UAV) imagery. Based on the You Only Look Once version 11 nano (YOLOv11n) baseline, EHDC-YOLO systematically introduces several architectural enhancements: (1) a Multi-Scale Edge Enhancement (MSEE) module… More >

  • Open Access

    ARTICLE

    Unsupervised Satellite Low-Light Image Enhancement Based on the Improved Generative Adversarial Network

    Ming Chen1,*, Yanfei Niu2, Ping Qi1, Fucheng Wang1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5015-5035, 2025, DOI:10.32604/cmc.2025.067951 - 23 October 2025

    Abstract This research addresses the critical challenge of enhancing satellite images captured under low-light conditions, which suffer from severely degraded quality, including a lack of detail, poor contrast, and low usability. Overcoming this limitation is essential for maximizing the value of satellite imagery in downstream computer vision tasks (e.g., spacecraft on-orbit connection, spacecraft surface repair, space debris capture) that rely on clear visual information. Our key novelty lies in an unsupervised generative adversarial network featuring two main contributions: (1) an improved U-Net (IU-Net) generator with multi-scale feature fusion in the contracting path for richer semantic feature… More >

  • Open Access

    ARTICLE

    BSDNet: Semantic Information Distillation-Based for Bilateral-Branch Real-Time Semantic Segmentation on Street Scene Image

    Huan Zeng, Jianxun Zhang*, Hongji Chen, Xinwei Zhu

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3879-3896, 2025, DOI:10.32604/cmc.2025.066803 - 23 September 2025

    Abstract Semantic segmentation in street scenes is a crucial technology for autonomous driving to analyze the surrounding environment. In street scenes, issues such as high image resolution caused by a large viewpoints and differences in object scales lead to a decline in real-time performance and difficulties in multi-scale feature extraction. To address this, we propose a bilateral-branch real-time semantic segmentation method based on semantic information distillation (BSDNet) for street scene images. The BSDNet consists of a Feature Conversion Convolutional Block (FCB), a Semantic Information Distillation Module (SIDM), and a Deep Aggregation Atrous Convolution Pyramid Pooling (DASP). More >

  • Open Access

    REVIEW

    Deep Multi-Scale and Attention-Based Architectures for Semantic Segmentation in Biomedical Imaging

    Majid Harouni1,*, Vishakha Goyal1, Gabrielle Feldman1, Sam Michael2, Ty C. Voss1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 331-366, 2025, DOI:10.32604/cmc.2025.067915 - 29 August 2025

    Abstract Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational More >

  • Open Access

    ARTICLE

    VMHPE: Human Pose Estimation for Virtual Maintenance Tasks

    Shuo Zhang, Hanwu He, Yueming Wu*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 801-826, 2025, DOI:10.32604/cmc.2025.066540 - 29 August 2025

    Abstract Virtual maintenance, as an important means of industrial training and education, places strict requirements on the accuracy of participant pose perception and assessment of motion standardization. However, existing research mainly focuses on human pose estimation in general scenarios, lacking specialized solutions for maintenance scenarios. This paper proposes a virtual maintenance human pose estimation method based on multi-scale feature enhancement (VMHPE), which integrates adaptive input feature enhancement, multi-scale feature correction for improved expression of fine movements and complex poses, and multi-scale feature fusion to enhance keypoint localization accuracy. Meanwhile, this study constructs the first virtual maintenance-specific… More >

  • Open Access

    ARTICLE

    Enhancing Classroom Behavior Recognition with Lightweight Multi-Scale Feature Fusion

    Chuanchuan Wang1,2, Ahmad Sufril Azlan Mohamed2,*, Xiao Yang 2, Hao Zhang 2, Xiang Li1, Mohd Halim Bin Mohd Noor 2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 855-874, 2025, DOI:10.32604/cmc.2025.066343 - 29 August 2025

    Abstract Classroom behavior recognition is a hot research topic, which plays a vital role in assessing and improving the quality of classroom teaching. However, existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures, and inconsistent objects. To address this challenge, we proposed an effective, lightweight object detector method called the RFNet model (YOLO-FR). The YOLO-FR is a lightweight and effective model. Specifically, for efficient multi-scale feature extraction, effective feature pyramid shared convolutional (FPSC) was designed to improve the feature extract performance by leveraging convolutional… More >

  • Open Access

    ARTICLE

    Visual Perception and Adaptive Scene Analysis with Autonomous Panoptic Segmentation

    Darthy Rabecka V1,*, Britto Pari J1, Man-Fai Leung2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 827-853, 2025, DOI:10.32604/cmc.2025.064924 - 29 August 2025

    Abstract Techniques in deep learning have significantly boosted the accuracy and productivity of computer vision segmentation tasks. This article offers an intriguing architecture for semantic, instance, and panoptic segmentation using EfficientNet-B7 and Bidirectional Feature Pyramid Networks (Bi-FPN). When implemented in place of the EfficientNet-B5 backbone, EfficientNet-B7 strengthens the model’s feature extraction capabilities and is far more appropriate for real-world applications. By ensuring superior multi-scale feature fusion, Bi-FPN integration enhances the segmentation of complex objects across various urban environments. The design suggested is examined on rigorous datasets, encompassing Cityscapes, Common Objects in Context, KITTI Karlsruhe Institute of… More >

  • Open Access

    ARTICLE

    Hybrid HRNet-Swin Transformer: Multi-Scale Feature Fusion for Aerial Segmentation and Classification

    Asaad Algarni1, Aysha Naseer 2, Mohammed Alshehri3, Yahya AlQahtani4, Abdulmonem Alshahrani4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1981-1998, 2025, DOI:10.32604/cmc.2025.064268 - 29 August 2025

    Abstract Remote sensing plays a pivotal role in environmental monitoring, disaster relief, and urban planning, where accurate scene classification of aerial images is essential. However, conventional convolutional neural networks (CNNs) struggle with long-range dependencies and preserving high-resolution features, limiting their effectiveness in complex aerial image analysis. To address these challenges, we propose a Hybrid HRNet-Swin Transformer model that synergizes the strengths of HRNet-W48 for high-resolution segmentation and the Swin Transformer for global feature extraction. This hybrid architecture ensures robust multi-scale feature fusion, capturing fine-grained details and broader contextual relationships in aerial imagery. Our methodology begins with… More >

  • Open Access

    ARTICLE

    Multi-Scale Fusion Network Using Time-Division Fourier Transform for Rolling Bearing Fault Diagnosis

    Ronghua Wang1, Shibao Sun1,*, Pengcheng Zhao1,*, Xianglan Yang2, Xingjia Wei1, Changyang Hu1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3519-3539, 2025, DOI:10.32604/cmc.2025.066212 - 03 July 2025

    Abstract The capacity to diagnose faults in rolling bearings is of significant practical importance to ensure the normal operation of the equipment. Frequency-domain features can effectively enhance the identification of fault modes. However, existing methods often suffer from insufficient frequency-domain representation in practical applications, which greatly affects diagnostic performance. Therefore, this paper proposes a rolling bearing fault diagnosis method based on a Multi-Scale Fusion Network (MSFN) using the Time-Division Fourier Transform (TDFT). The method constructs multi-scale channels to extract time-domain and frequency-domain features of the signal in parallel. A multi-level, multi-scale filter-based approach is designed to More >

  • Open Access

    ARTICLE

    Fake News Detection Based on Cross-Modal Ambiguity Computation and Multi-Scale Feature Fusion

    Jianxiang Cao1, Jinyang Wu1, Wenqian Shang1,*, Chunhua Wang1, Kang Song1, Tong Yi2,*, Jiajun Cai1, Haibin Zhu3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2659-2675, 2025, DOI:10.32604/cmc.2025.060025 - 16 April 2025

    Abstract With the rapid growth of social media, the spread of fake news has become a growing problem, misleading the public and causing significant harm. As social media content is often composed of both images and text, the use of multimodal approaches for fake news detection has gained significant attention. To solve the problems existing in previous multi-modal fake news detection algorithms, such as insufficient feature extraction and insufficient use of semantic relations between modes, this paper proposes the MFFFND-Co (Multimodal Feature Fusion Fake News Detection with Co-Attention Block) model. First, the model deeply explores the More >

Displaying 1-10 on page 1 of 32. Per Page