Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Predominant Leptadenia pyrotechnica Alkali-Treated Fiber Composites: Characteristics Analysis

    Aruna M. Pugalenthi*, Khaoula Khlie

    Journal of Renewable Materials, Vol.12, No.11, pp. 1879-1893, 2024, DOI:10.32604/jrm.2024.055747 - 22 November 2024

    Abstract With growing environmental concerns and the depletion of oil reserves, the need to replace synthetic fibres with sustainable alternatives in composite materials has become increasingly urgent. This study investigates the potential of Leptadenia pyrotechnica fibre as a sustainable reinforcement material in hybrid composites alongside E-glass fibres. The primary objectives are to assess these hybrid composites’ mechanical properties, structural integrity, and performance. To achieve this, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were employed to analyze the microstructure and chemical composition of the composites. At the same time, mechanical testing focused on properties such… More >

  • Open Access

    RETRACTION

    Retraction: Fabrication and Comparative Properties of Sustainable Epoxy Methacrylate of Bisphenol-C-Jute/Treated JuteNatural Fibers Sandwich Composites: Part-II

    JPM Editorial Office

    Journal of Polymer Materials, Vol.41, No.3, pp. 205-205, 2024, DOI:10.32604/jpm.2024.058921 - 30 September 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Potential of Bamboo Species Guadua trinii and Guadua angustifolia for Nanocellulose Production

    Agatha E. R. Prado Gárate1,2, Fernando E. Felissia2, María Cristina Area2, Teresa Suirezs3, María Evangelina Vallejos2,*

    Journal of Renewable Materials, Vol.12, No.9, pp. 1541-1555, 2024, DOI:10.32604/jrm.2024.052481 - 25 September 2024

    Abstract Non-traditional lignocellulosic materials are a significant resource for producing high-value products, including nanocellulose. This work studied the nanocellulose obtention from chemical pulps of the two fast-growing bamboo species, Guadua trinii, and Guadua angustifolia. Chemical pulps were produced by soda-anthraquinone (S) pulping from both autohydrolysis-pretreated (H) and unpretreated bamboo chips. Autohydrolysis-pretreated (SHP) and unpretreated soda-anthraquinone (AQ) (SP) pulps were characterized by yield, Kappa number, alpha, beta, and gamma cellulose, degree of polymerization, water retention value, and crystallinity. The nanocellulose was produced by a sequential chemical oxidation treatment (2,2,6,6-tetramethylpiperidine-1-oxyl, TEMPO reagent) and mechanical nanofibrillation. Nanocellulose was characterized by carboxylic… More > Graphic Abstract

    Potential of Bamboo Species <i>Guadua trinii</i> and <i>Guadua angustifolia</i> for Nanocellulose Production

  • Open Access

    REVIEW

    A Review on the Advancement of Renewable Natural Fiber Hybrid Composites: Prospects, Challenges, and Industrial Applications

    Mohammed Mohammed1,2,*, Jawad K. Oleiwi3, Aeshah M. Mohammed4, Anwar Ja’afar Mohamad Jawad5, Azlin F. Osman1,2, Tijjani Adam6, Bashir O. Betar7, Subash C. B. Gopinath2,8,9

    Journal of Renewable Materials, Vol.12, No.7, pp. 1237-1290, 2024, DOI:10.32604/jrm.2024.051201 - 21 August 2024

    Abstract Natural fibre (NFR) reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight, lower cost in manufacture, and adaptability to a wide variety of goods. However, the major difficulties of using these fibres are their existing poor dimensional stability and the extreme hydrophilicity. In assessing the mechanical properties (MP) of composites, the interfacial bonding (IB) happening between the NFR and the polymer matrix (PM) plays an incredibly significant role. When compared to NFR/synthetic fibre hybrid composites, hybrid composites (HC) made up of two separate NFR are… More > Graphic Abstract

    A Review on the Advancement of Renewable Natural Fiber Hybrid Composites: Prospects, Challenges, and Industrial Applications

  • Open Access

    ARTICLE

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

    Mohammad Javad SheikhMozafari*

    Sound & Vibration, Vol.58, pp. 81-100, 2024, DOI:10.32604/sv.2024.048897 - 27 February 2024

    Abstract Mitigating low-frequency noise poses a significant challenge for acoustic engineers, due to their long wavelength, with conventional porous sound absorbers showing limitations in attenuating such noise. An effective strategy involves combining porous materials with micro-perforated plates (MPP) to address this issue. Given the significant impact of structural variables like panel thickness, hole diameter, and air gap on the acoustic characteristics of MPP, achieving the optimal condition demands numerous sample iterations. The impedance tube’s considerable expense for sound absorption measurement and the substantial cost involved in fabricating each sample using a 3D printer underscore the advantage… More > Graphic Abstract

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

  • Open Access

    ARTICLE

    Impact on Mechanical Properties of Surface Treated Coconut Leaf Sheath Fiber/Sic Nano Particles Reinforced Phenol-formaldehyde Polymer Composites

    B. BRAILSON MANSINGH1, K. L. NARASIMHAMU2, K. C. VARAPRASAD3, J. S. BINOJ4,*, A. RADHAKRISHNAN5, ALAMRY ALI6

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 71-82, 2023, DOI:10.32381/JPM.2023.40.1-2.6

    Abstract Several agro-wastes are rich in natural fibers and finds scope to be used as reinforcement in composite industry. These natural fibers have some advantages over man-made fibers, including low cost, light weight, renewable nature, high specific strength and modulus, and availability in various forms worldwide. In this paper, the effect of surface modification of leaf sheath coconut fiber (LSF) (an agro-waste) reinforced in phenol formaldehyde matrix composites with silicon carbide (SiC) nano particles as filler material were investigated for its mechanical characteristics. The investigation portrays that coconut LSF (CLSF) modified with potassium permanganate reinforced polymer More >

  • Open Access

    ARTICLE

    Characterization of Potential Cellulose from Hylocereus Polyrhizus (Dragon Fruit) peel: A Study on Physicochemical and Thermal Properties

    Nurul Hanan Taharuddin1, Ridhwan Jumaidin2,*, Muhd Ridzuan Mansor1, Fahmi Asyadi Md Yusof3, Roziela Hanim Alamjuri4,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 131-145, 2023, DOI:10.32604/jrm.2022.021528 - 10 August 2022

    Abstract The strict environmental regulations to overcome the drawbacks of consumption and disposal of non-renewable synthetic materials have motivated this investigation. The physical, chemical, morphological, and thermal properties of Hylocereus Polyrhizus peel (HPP) powder obtained from the raw materials were examined in this study. The physical properties analyzes of Hylocereus Polyrhizus peel (HPP) powder discovered that the moisture content, density, and water holding capacity were 9.70%, 0.45 g/cm3 , and 98.60%, respectively. Meanwhile, the chemical composition analysis of Hylocereus Polyrhizus peel (HPP) powder revealed that the powder was significantly high in cellulose contents (34.35%) from other bio-peel wastes. The… More > Graphic Abstract

    Characterization of Potential Cellulose from <i>Hylocereus Polyrhizus</i> (Dragon Fruit) peel: A Study on Physicochemical and Thermal Properties

  • Open Access

    ARTICLE

    Fabrication and Comparative Properties of Sustainable Epoxy Methacrylate of Bisphenol-C-Jute/Treated JuteNatural Fibers Sandwich Composites: Part-2

    RITESH D. BHATT, JIGNESH P. PATEL, PARSOTAM H. PARSANIA*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 223-239, 2022, DOI:10.32381/JPM.2022.39.3-4.4

    Abstract Compression-molded epoxy methacrylate of bisphenol-C-jute/treated jute-banana/groundnut/ cane sugar/pineapple leaf/rice husk/wheat husk sandwich composites were fabricated under 5 MPa pressure at room temperature for 3 h. Alkali treated jute-natural fiber sandwich composites displayed considerably improved mechanical properties over untreated jute-natural fiber sandwich composites due to surface modification of the jute fibers. Both types of sandwich composites showed high water uptake tendency, excellent hydrolytic stability against acids, alkali, and salt solutions, and also a longer equilibrium time at 30o C. Alkali treated sandwich composites revealed a considerably lower water uptake tendency than untreated sandwich composites. Observed water More >

  • Open Access

    ARTICLE

    Fabrication and Comparative Properties of Sustainable Epoxy Methacrylate of Bisphenol-C-Jute/Treated JuteNatural Fibers Sandwich Composites: Part-1

    RITESH D. BHATT, JIGNESH P. PATEL, PARSOTAM H. PARSANIA*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 205-221, 2022, DOI:10.32381/JPM.2022.39.3-4.3

    Abstract Epoxy methacrylate of bisphenol-C-jute/treated jute and their sandwich composites of white coir, brown coir, wild almond, bamboo, betel nut, and palmyra were prepared by a compression molding technique under 5MPa pressure and at room temperature for three h. The neat sample showed almost double tensile strength than its jute composite, while it is comparable for treated jute. The composites revealed substantially improved flexural strength compared to neat. The neat, jute/treated jute and their sandwich composites indicated good impact strength, pretty good Barcol hardness, and fairly good electric strength. The neat sample showed excellent volume resistivity, More >

  • Open Access

    ARTICLE

    Fabrication and Comparative Properties of Sustainable Epoxy Methacrylate of Bisphenol-C-Jute/Treated JuteNatural Fibers Sandwich Composites: Part-II

    RITESH D. BHATT, JIGNESH P. PATEL, PARSOTAM H. PARSANIA*

    Journal of Polymer Materials, Vol.39, No.1-2, pp. 37-53, 2022, DOI:10.32381/JPM.2022.39.1-2.3

    Abstract Compression-molded epoxy methacrylate of bisphenol-C-jute/treated jute-banana/groundnut/ cane sugar/pineapple leaf/rice husk/wheat husk sandwich composites were fabricated under 5 MPa pressure at room temperature for 3 h. Alkali treated jute-natural fiber sandwich composites displayed considerably improved mechanical properties over untreated jute-natural fiber sandwich composites due to surface modification of the jute fibers. Both types of sandwich composites showed high water uptake tendency, excellent hydrolytic stability against acids, alkali, and salt solutions, and also a longer equilibrium time at 30o C. Alkali treated sandwich composites revealed a considerably lower water uptake tendency than untreated sandwich composites. Observed water More >

Displaying 1-10 on page 1 of 26. Per Page