Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Natural Fiber-Polypropylene Composites Made from Caranday Palm

    Estela Krause Sammartino1,2,3†, María Marta Reboredo4, Mirta I. Aranguren*,4

    Journal of Renewable Materials, Vol.4, No.2, pp. 101-112, 2016, DOI:10.7569/JRM.2014.634144

    Abstract Composites made from polypropylene (PP) and local South American fibers traditionally used in yarnderived craftsmanships, Caranday Palm, were studied regarding the effect of fiber addition, concentration and characteristics of the coupling agent (molecular weight and percentage of grafted maleic anhydride), as well as type of processing. A laboratory-scale intensive mixing followed by compression, and pilot plant twin extrusion followed by injection, were the two processes investigated. The use of the first one allowed the selection of processable formulations with high fiber concentration and a percentage of coupling agent below the surface fiber saturation. In fact, it was found that there… More >

  • Open Access

    ARTICLE

    Development and Characterization of the Midrib of Coconut Palm Leaf Reinforced Polyester Composite

    Neeraj Dubey1, Geeta Agnihotri1

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 39-56, 2015, DOI:10.3970/cmc.2015.045.039

    Abstract In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2More >

Displaying 21-30 on page 3 of 22. Per Page