Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (74)
  • Open Access

    ARTICLE

    Application of Zero-Watermarking for Medical Image in Intelligent Sensor Network Security

    Shixin Tu, Yuanyuan Jia, Jinglong Du*, Baoru Han*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 293-321, 2023, DOI:10.32604/cmes.2023.022308 - 05 January 2023

    Abstract The field of healthcare is considered to be the most promising application of intelligent sensor networks. However, the security and privacy protection of medical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention. Fortunately, digital watermarking provides an effective method to solve this problem. In order to improve the robustness of the medical image watermarking scheme, in this paper, we propose a novel zero-watermarking algorithm with the integer wavelet transform (IWT), Schur decomposition and image block energy. Specifically, we first use IWT to extract low-frequency information and… More >

  • Open Access

    ARTICLE

    Central Aggregator Intrusion Detection System for Denial of Service Attacks

    Sajjad Ahmad1, Imran Raza1, M. Hasan Jamal1, Sirojiddin Djuraev2, Soojung Hur3, Imran Ashraf3,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2363-2377, 2023, DOI:10.32604/cmc.2023.032694 - 31 October 2022

    Abstract Vehicle-to-grid technology is an emerging field that allows unused power from Electric Vehicles (EVs) to be used by the smart grid through the central aggregator. Since the central aggregator is connected to the smart grid through a wireless network, it is prone to cyber-attacks that can be detected and mitigated using an intrusion detection system. However, existing intrusion detection systems cannot be used in the vehicle-to-grid network because of the special requirements and characteristics of the vehicle-to-grid network. In this paper, the effect of denial-of-service attacks of malicious electric vehicles on the central aggregator of… More >

  • Open Access

    ARTICLE

    BotSward: Centrality Measures for Graph-Based Bot Detection Using Machine Learning

    Khlood Shinan1,2, Khalid Alsubhi2, M. Usman Ashraf3,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 693-714, 2023, DOI:10.32604/cmc.2023.031641 - 22 September 2022

    Abstract The number of botnet malware attacks on Internet devices has grown at an equivalent rate to the number of Internet devices that are connected to the Internet. Bot detection using machine learning (ML) with flow-based features has been extensively studied in the literature. Existing flow-based detection methods involve significant computational overhead that does not completely capture network communication patterns that might reveal other features of malicious hosts. Recently, Graph-Based Bot Detection methods using ML have gained attention to overcome these limitations, as graphs provide a real representation of network communications. The purpose of this study… More >

  • Open Access

    ARTICLE

    Wireless Network Security Using Load Balanced Mobile Sink Technique

    Reem Alkanhel1, Mohamed Abouhawwash2,3, S. N. Sangeethaa4, K. Venkatachalam5, Doaa Sami Khafaga6,*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2135-2149, 2023, DOI:10.32604/iasc.2023.028852 - 19 July 2022

    Abstract Real-time applications based on Wireless Sensor Network (WSN) technologies are quickly increasing due to intelligent surroundings. Among the most significant resources in the WSN are battery power and security. Clustering strategies improve the power factor and secure the WSN environment. It takes more electricity to forward data in a WSN. Though numerous clustering methods have been developed to provide energy consumption, there is indeed a risk of unequal load balancing, resulting in a decrease in the network’s lifetime due to network inequalities and less security. These possibilities arise due to the cluster head’s limited life… More >

  • Open Access

    ARTICLE

    Improving Intrusion Detection in UAV Communication Using an LSTM-SMOTE Classification Method

    Abdulrahman M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal of Cyber Security, Vol.4, No.4, pp. 287-298, 2022, DOI:10.32604/jcs.2023.042486 - 10 August 2023

    Abstract Unmanned Aerial Vehicles (UAVs) proliferate quickly and play a significant part in crucial tasks, so it is important to protect the security and integrity of UAV communication channels. Intrusion Detection Systems (IDSs) are required to protect the UAV communication infrastructure from unauthorized access and harmful actions. In this paper, we examine a new approach for enhancing intrusion detection in UAV communication channels by utilizing the Long Short-Term Memory network (LSTM) combined with the Synthetic Minority Oversampling Technique (SMOTE) algorithm, and this integration is the binary classification method (LSTM-SMOTE). We successfully achieved 99.83% detection accuracy by More >

  • Open Access

    REVIEW

    Analysis of Campus Network Security

    Han Chu, Haoliang Lan*, Jie Xu, Xiao Feng Sun

    Journal of New Media, Vol.4, No.4, pp. 219-229, 2022, DOI:10.32604/jnm.2022.034830 - 12 December 2022

    Abstract Campus network provides a critical stage to student service and campus administration, which assumes a paramount part in the strategy of ‘Rejuvenating the Country through Science and Education’ and ‘Revitalizing China through Talented Persons’. However, with the rapid development and continuous expansion of campus network, network security needs to be an essential issue that could not be overlooked in campus network construction. In order to ensure the normal operation of various functions of the campus network, the security risk level of the campus network is supposed to be controlled within a reasonable range at any More >

  • Open Access

    ARTICLE

    A New Intrusion Detection Algorithm AE-3WD for Industrial Control Network

    Yongzhong Li1,2,*, Cong Li1, Yuheng Li3, Shipeng Zhang2

    Journal of New Media, Vol.4, No.4, pp. 205-217, 2022, DOI:10.32604/jnm.2022.034778 - 12 December 2022

    Abstract In this paper, we propose a intrusion detection algorithm based on auto-encoder and three-way decisions (AE-3WD) for industrial control networks, aiming at the security problem of industrial control network. The ideology of deep learning is similar to the idea of intrusion detection. Deep learning is a kind of intelligent algorithm and has the ability of automatically learning. It uses self-learning to enhance the experience and dynamic classification capabilities. We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning, a denoising AutoEncoder and three-way decisions intrusion detection method More >

  • Open Access

    ARTICLE

    Adaptive Polling Rate for SNMP for Detecting Elusive DDOS

    Yichiet Aun*, Yen-Min Jasmina Khaw, Ming-Lee Gan, Vasaki Ponnusamy

    Journal of Cyber Security, Vol.4, No.1, pp. 17-28, 2022, DOI:10.32604/jcs.2022.027524 - 05 May 2022

    Abstract Resilient network infrastructure is pivotal for business entities that are growing reliance on the Internet. Distributed Denial-of-Service (DDOS) is a common network threat that collectively overwhelms and exhausts network resources using coordinated botnets to interrupt access to network services, devices, and resources. IDS is typically deployed to detect DDOS based on Snort rules. Although being fairly accurate, IDS operates on a compute-intensive packet inspection technique and lacks rapid DDOS detection. Meanwhile, SNMP is a comparably lightweight countermeasure for fast detection. However, this SNMP trigger is often circumvented if the DDOS burst rate is coordinated to… More >

  • Open Access

    ARTICLE

    An Efficient Stabbing Based Intrusion Detection Framework for Sensor Networks

    A. Arivazhagi1,*, S. Raja Kumar2

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 141-157, 2022, DOI:10.32604/csse.2022.021851 - 23 March 2022

    Abstract Intelligent Intrusion Detection System (IIDS) for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall. The efficiency of IIDS highly relies on the algorithm performance. The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms. Here, a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework (SILF), is proposed to learn the attack features and reduce the dimensionality. It also reduces the testing and training time effectively and enhances Linear… More >

  • Open Access

    ARTICLE

    Invariant of Enhanced AES Algorithm Implementations Against Power Analysis Attacks

    Nadia Mustaqim Ansari1,*, Rashid Hussain2, Sheeraz Arif3, Syed Sajjad Hussain4

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1861-1875, 2022, DOI:10.32604/cmc.2022.023516 - 24 February 2022

    Abstract The security of Internet of Things (IoT) is a challenging task for researchers due to plethora of IoT networks. Side Channel Attacks (SCA) are one of the major concerns. The prime objective of SCA is to acquire the information by observing the power consumption, electromagnetic (EM) field, timing analysis, and acoustics of the device. Later, the attackers perform statistical functions to recover the key. Advanced Encryption Standard (AES) algorithm has proved to be a good security solution for constrained IoT devices. This paper implements a simulation model which is used to modify the AES algorithm… More >

Displaying 41-50 on page 5 of 74. Per Page