Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,603)
  • Open Access

    ARTICLE

    CNN Based Driver Drowsiness Detection System Using Emotion Analysis

    H. Varun Chand*, J. Karthikeyan

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 717-728, 2022, DOI:10.32604/iasc.2022.020008 - 22 September 2021

    Abstract

    The drowsiness of the driver and rash driving are the major causes of road accidents, which result in loss of valuable life, and deteriorate the safety in the road traffic. Reliable and precise driver drowsiness systems are required to prevent road accidents and to improve road traffic safety. Various driver drowsiness detection systems have been designed with different technologies which have an affinity towards the unique parameter of detecting the drowsiness of the driver. This paper proposes a novel model of multi-level distribution of detecting the driver drowsiness using the Convolution Neural Networks (CNN) followed

    More >

  • Open Access

    ARTICLE

    User Interaction Based Recommender System Using Machine Learning

    R. Sabitha1, S. Vaishnavi2,*, S. Karthik1, R. M. Bhavadharini3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1037-1049, 2022, DOI:10.32604/iasc.2022.018985 - 22 September 2021

    Abstract In the present scenario of electronic commerce (E-Commerce), the in-depth knowledge of user interaction with resources has become a significant research concern that impacts more on analytical evaluations of recommender systems. For staying in aggressive E-Commerce, various products and services regarding distinctive requirements must be provided on time. Moreover, because of the large amount of product information available online, Recommender Systems (RS) are required to analyze the availability of consumers, which improves the decision-making of customers with detailed product knowledge and reduces time consumption. With that note, this paper derives a new model called User… More >

  • Open Access

    ARTICLE

    ResNet CNN with LSTM Based Tamil Text Detection from Video Frames

    I. Muthumani1,*, N. Malmurugan2, L. Ganesan3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 917-928, 2022, DOI:10.32604/iasc.2022.018030 - 22 September 2021

    Abstract Text content in videos includes applications such as library video retrievals, live-streaming advertisements, opinion mining, and video synthesis. The key components of such systems include video text detection and acknowledgments. This paper provides a framework to detect and accept text video frames, aiming specifically at the cursive script of Tamil text. The model consists of a text detector, script identifier, and text recognizer. The identification in video frames of textual regions is performed using deep neural networks as object detectors. Textual script content is associated with convolutional neural networks (CNNs) and recognized by combining ResNet More >

  • Open Access

    ARTICLE

    Learning Patterns from COVID-19 Instances

    Rehan Ullah Khan*, Waleed Albattah, Suliman Aladhadh, Shabana Habib

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 765-777, 2022, DOI:10.32604/csse.2022.019757 - 09 September 2021

    Abstract Coronavirus disease, which resulted from the SARS-CoV-2 virus, has spread worldwide since early 2020 and has been declared a pandemic by the World Health Organization (WHO). Coronavirus disease is also termed COVID-19. It affects the human respiratory system and thus can be traced and tracked from the Chest X-Ray images. Therefore, Chest X-Ray alone may play a vital role in identifying COVID-19 cases. In this paper, we propose a Machine Learning (ML) approach that utilizes the X-Ray images to classify the healthy and affected patients based on the patterns found in these images. The article… More >

  • Open Access

    ARTICLE

    Classification and Diagnosis of Lymphoma’s Histopathological Images Using Transfer Learning

    Schahrazad Soltane*, Sameer Alsharif , Salwa M.Serag Eldin

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 629-644, 2022, DOI:10.32604/csse.2022.019333 - 09 September 2021

    Abstract Current cancer diagnosis procedure requires expert knowledge and is time-consuming, which raises the need to build an accurate diagnosis support system for lymphoma identification and classification. Many studies have shown promising results using Machine Learning and, recently, Deep Learning to detect malignancy in cancer cells. However, the diversity and complexity of the morphological structure of lymphoma make it a challenging classification problem. In literature, many attempts were made to classify up to four simple types of lymphoma. This paper presents an approach using a reliable model capable of diagnosing seven different categories of rare and… More >

  • Open Access

    ARTICLE

    Design of Neural Network Based Wind Speed Prediction Model Using GWO

    R. Kingsy Grace1,*, R. Manimegalai2

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 593-606, 2022, DOI:10.32604/csse.2022.019240 - 09 September 2021

    Abstract The prediction of wind speed is imperative nowadays due to the increased and effective generation of wind power. Wind power is the clean, free and conservative renewable energy. It is necessary to predict the wind speed, to implement wind power generation. This paper proposes a new model, named WT-GWO-BPNN, by integrating Wavelet Transform (WT), Back Propagation Neural Network (BPNN) and Grey Wolf Optimization (GWO). The wavelet transform is adopted to decompose the original time series data (wind speed) into approximation and detailed band. GWO – BPNN is applied to predict the wind speed. GWO is… More >

  • Open Access

    ARTICLE

    Desertification Detection in Makkah Region based on Aerial Images Classification

    Yahia Said1,2,*, Mohammad Barr1, Taoufik Saidani2,3, Mohamed Atri2,4

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 607-618, 2022, DOI:10.32604/csse.2022.018479 - 09 September 2021

    Abstract Desertification has become a global threat and caused a crisis, especially in Middle Eastern countries, such as Saudi Arabia. Makkah is one of the most important cities in Saudi Arabia that needs to be protected from desertification. The vegetation area in Makkah has been damaged because of desertification through wind, floods, overgrazing, and global climate change. The damage caused by desertification can be recovered provided urgent action is taken to prevent further degradation of the vegetation area. In this paper, we propose an automatic desertification detection system based on Deep Learning techniques. Aerial images are More >

  • Open Access

    ARTICLE

    Optimal Deep Dense Convolutional Neural Network Based Classification Model for COVID-19 Disease

    A. Sheryl Oliver1, P. Suresh2, A. Mohanarathinam3, Seifedine Kadry4, Orawit Thinnukool5,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 2031-2047, 2022, DOI:10.32604/cmc.2022.019876 - 07 September 2021

    Abstract Early diagnosis and detection are important tasks in controlling the spread of COVID-19. A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays. However, these methods suffer from biased results and inaccurate detection of the disease. So, the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network (OCOA-DDCNN) for COVID-19 prediction using CT images in IoT environment. The proposed methodology works on the basis of two stages such as pre-processing and prediction. Initially, CT scan images generated… More >

  • Open Access

    ARTICLE

    A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19

    Ahmed Reda*, Sherif Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1381-1399, 2022, DOI:10.32604/cmc.2022.019809 - 07 September 2021

    Abstract Many respiratory infections around the world have been caused by coronaviruses. COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate. There is a high need for computer-assisted diagnostics (CAD) in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems. Machine learning (ML) has been used to examine chest X-ray frames. In this paper, a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes, a pneumonia patient, a More >

  • Open Access

    ARTICLE

    Medical Image Compression Method Using Lightweight Multi-Layer Perceptron for Mobile Healthcare Applications

    Taesik Lee1, Dongsan Jun1,*, Sang-hyo Park2, Byung-Gyu Kim3, Jungil Yun4, Kugjin Yun4, Won-Sik Cheong4

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 2013-2029, 2022, DOI:10.32604/cmc.2022.019604 - 07 September 2021

    Abstract As video compression is one of the core technologies required to enable seamless medical data streaming in mobile healthcare applications, there is a need to develop powerful media codecs that can achieve minimum bitrates while maintaining high perceptual quality. Versatile Video Coding (VVC) is the latest video coding standard that can provide powerful coding performance with a similar visual quality compared to the previously developed method that is High Efficiency Video Coding (HEVC). In order to achieve this improved coding performance, VVC adopted various advanced coding tools, such as flexible Multi-type Tree (MTT) block structure… More >

Displaying 1211-1220 on page 122 of 1603. Per Page