Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,603)
  • Open Access

    ARTICLE

    Plant Disease Classification Using Deep Bilinear CNN

    D. Srinivasa Rao1, Ramesh Babu Ch2, V. Sravan Kiran1, N. Rajasekhar3,*, Kalyanapu Srinivas4, P. Shilhora Akshay1, G. Sai Mohan1, B. Lalith Bharadwaj1

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 161-176, 2022, DOI:10.32604/iasc.2022.017706 - 03 September 2021

    Abstract

    Plant diseases have become a major threat in farming and provision of food. Various plant diseases have affected the natural growth of the plants and the infected plants are the leading factors for loss of crop production. The manual detection and identification of the plant diseases require a careful and observative examination through expertise. To overcome manual testing procedures an automated identification and detection can be implied which provides faster, scalable and precisive solutions. In this research, the contributions of our work are threefold. Firstly, a bi-linear convolution neural network (Bi-CNNs) for plant leaf disease

    More >

  • Open Access

    ARTICLE

    An Optimized CNN Model Architecture for Detecting Coronavirus (COVID-19) with X-Ray Images

    Anas Basalamah1, Shadikur Rahman2,*

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 375-388, 2022, DOI:10.32604/csse.2022.016949 - 26 August 2021

    Abstract This paper demonstrates empirical research on using convolutional neural networks (CNN) of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction. Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge. In this study, CNN architectures such as VGG-16, VGG-19, RestNet50, RestNet18 are compared, and an optimized model for feature extraction in X-ray images from various domains involving several classes is proposed. An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for More >

  • Open Access

    ARTICLE

    Verifiable Privacy-Preserving Neural Network on Encrypted Data

    Yichuan Liu1, Chungen Xu1,*, Lei Xu1, Lin Mei1, Xing Zhang2, Cong Zuo3

    Journal of Information Hiding and Privacy Protection, Vol.3, No.4, pp. 151-164, 2021, DOI:10.32604/jihpp.2021.026944 - 22 March 2022

    Abstract The widespread acceptance of machine learning, particularly of neural networks leads to great success in many areas, such as recommender systems, medical predictions, and recognition. It is becoming possible for any individual with a personal electronic device and Internet access to complete complex machine learning tasks using cloud servers. However, it must be taken into consideration that the data from clients may be exposed to cloud servers. Recent work to preserve data confidentiality has allowed for the outsourcing of services using homomorphic encryption schemes. But these architectures are based on honest but curious cloud servers,… More >

  • Open Access

    ARTICLE

    A Deep Learning Breast Cancer Prediction Framework

    Asmaa E. E. Ali*, Mofreh Mohamed Salem, Mahmoud Badway, Ali I. EL Desouky

    Journal on Artificial Intelligence, Vol.3, No.3, pp. 81-96, 2021, DOI:10.32604/jai.2021.022433 - 25 January 2022

    Abstract Breast cancer (BrC) is now the world’s leading cause of death for women. Early detection and effective treatment of this disease are the only rescues to reduce BrC mortality. The prediction of BrC diseases is very difficult because it is not an individual disease but a mixture of various diseases. Many researchers have used different techniques such as classification, Machine Learning (ML), and Deep Learning (DL) of the prediction of the breast tumor into Benign and Malignant. However, still there is a scope to introduce appropriate techniques for developing and implementing a more effective diagnosis… More >

  • Open Access

    ARTICLE

    Implementation of Art Pictures Style Conversion with GAN

    Xinlong Wu1, Desheng Zheng1,*, Kexin Zhang1, Yanling Lai1, Zhifeng Liu1, Zhihong Zhang2

    Journal of Quantum Computing, Vol.3, No.4, pp. 127-136, 2021, DOI:10.32604/jqc.2021.017251 - 10 January 2022

    Abstract Image conversion refers to converting an image from one style to another and ensuring that the content of the image remains unchanged. Using Generative Adversarial Networks (GAN) for image conversion can achieve good results. However, if there are enough samples, any image in the target domain can be mapped to the same set of inputs. On this basis, the Cycle Consistency Generative Adversarial Network (CycleGAN) was developed. This article verifies and discusses the advantages and disadvantages of the CycleGAN model in image style conversion. CycleGAN uses two generator networks and two discriminator networks. The purpose… More >

  • Open Access

    ARTICLE

    A TimeImageNet Sequence Learning for Remaining Useful Life Estimation of Turbofan Engine in Aircraft Systems

    S. Kalyani*, K. Venkata Rao, A. Mary Sowjanya

    Structural Durability & Health Monitoring, Vol.15, No.4, pp. 317-334, 2021, DOI:10.32604/sdhm.2021.016975 - 23 November 2021

    Abstract Internet of Things systems generate a large amount of sensor data that needs to be analyzed for extracting useful insights on the health status of the machine under consideration. Sensor data of all possible states of a system are used for building machine learning models. These models are further used to predict the possible downtime for proactive action on the system condition. Aircraft engine data from run to failure is used in the current study. The run to failure data includes states like new installation, stable operation, first reported issue, erroneous operation, and final failure.… More >

  • Open Access

    ARTICLE

    CTSF: An End-to-End Efficient Neural Network for Chinese Text with Skeleton Feature

    Hengyang Wang, Jin Liu*, Haoliang Ren

    Journal on Big Data, Vol.3, No.3, pp. 119-126, 2021, DOI:10.32604/jbd.2021.017184 - 22 November 2021

    Abstract The past decade has seen the rapid development of text detection based on deep learning. However, current methods of Chinese character detection and recognition have proven to be poor. The accuracy of segmenting text boxes in natural scenes is not impressive. The reasons for this strait can be summarized into two points: the complexity of natural scenes and numerous types of Chinese characters. In response to these problems, we proposed a lightweight neural network architecture named CTSF. It consists of two modules, one is a text detection network that combines CTPN and the image feature More >

  • Open Access

    ARTICLE

    BEVGGC: Biogeography-Based Optimization Expert-VGG for Diagnosis COVID-19 via Chest X-ray Images

    Junding Sun1,3,#, Xiang Li1,#, Chaosheng Tang1,*, Shixin Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 729-753, 2021, DOI:10.32604/cmes.2021.016416 - 08 October 2021

    Abstract Purpose: As to January 11, 2021, coronavirus disease (COVID-19) has caused more than 2 million deaths worldwide. Mainly diagnostic methods of COVID-19 are: (i) nucleic acid testing. This method requires high requirements on the sample testing environment. When collecting samples, staff are in a susceptible environment, which increases the risk of infection. (ii) chest computed tomography. The cost of it is high and some radiation in the scan process. (iii) chest X-ray images. It has the advantages of fast imaging, higher spatial recognition than chest computed tomography. Therefore, our team chose the chest X-ray images as More >

  • Open Access

    ARTICLE

    A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines

    Xiyang Li1,2, Bin Cheng1,2, Hui Zhang1,2,*, Xianghan Zhang1, Zhi Yun1

    Energy Engineering, Vol.118, No.6, pp. 1869-1886, 2021, DOI:10.32604/EE.2021.015542 - 10 September 2021

    Abstract With the continuous increase in the proportional use of wind energy across the globe, the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research. Therefore, it is crucial to accurately analyze the thickness of icing on wind turbine blades, which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas. This paper fully utilized the advantages of the support vector machine (SVM) and back-propagation More >

  • Open Access

    ARTICLE

    Numerical Solutions of a Novel Designed Prevention Class in the HIV Nonlinear Model

    Zulqurnain Sabir1, Muhammad Umar1, Muhammad Asif Zahoor Raja2,*, Dumitru Baleanu3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 227-251, 2021, DOI:10.32604/cmes.2021.016611 - 24 August 2021

    Abstract The presented research aims to design a new prevention class (P) in the HIV nonlinear system, i.e., the HIPV model. Then numerical treatment of the newly formulated HIPV model is portrayed handled by using the strength of stochastic procedure based numerical computing schemes exploiting the artificial neural networks (ANNs) modeling legacy together with the optimization competence of the hybrid of global and local search schemes via genetic algorithms (GAs) and active-set approach (ASA), i.e., GA-ASA. The optimization performances through GA-ASA are accessed by presenting an error-based fitness function designed for all the classes of the More >

Displaying 1231-1240 on page 124 of 1603. Per Page