Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (481)
  • Open Access

    ARTICLE

    Vehicle Plate Number Localization Using Memetic Algorithms and Convolutional Neural Networks

    Gibrael Abosamra*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3539-3560, 2023, DOI:10.32604/cmc.2023.032976 - 31 October 2022

    Abstract This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers (VPLN) in challenging image datasets. Since binarization of the input image is the most important and difficult step in the detection of VPLN, a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects (CCO) and hence enriches the solution space with more solution candidates. Due to the combination of the outputs of the three binarization techniques, many CCOs are produced into the output… More >

  • Open Access

    ARTICLE

    Optimization of Electrocardiogram Classification Using Dipper Throated Algorithm and Differential Evolution

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2,3, Faten Khalid Karim1,*, Sameer Alshetewi4, Abdelhameed Ibrahim5, Abdelaziz A. Abdelhamid6,7, D. L. Elsheweikh8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2379-2395, 2023, DOI:10.32604/cmc.2023.032886 - 31 October 2022

    Abstract Electrocardiogram (ECG) signal is a measure of the heart’s electrical activity. Recently, ECG detection and classification have benefited from the use of computer-aided systems by cardiologists. The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization (DTO) and Differential Evolution Algorithm (DEA) into a unified algorithm to optimize the hyperparameters of neural network (NN) for boosting the ECG classification accuracy. In addition, we proposed a new feature selection method for selecting the significant feature that can improve the overall performance. To prove the superiority of the More >

  • Open Access

    ARTICLE

    Numerical Comparison of Shapeless Radial Basis Function Networks in Pattern Recognition

    Sunisa Tavaen, Sayan Kaennakham*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4081-4098, 2023, DOI:10.32604/cmc.2023.032329 - 31 October 2022

    Abstract This work focuses on radial basis functions containing no parameters with the main objective being to comparatively explore more of their effectiveness. For this, a total of sixteen forms of shapeless radial basis functions are gathered and investigated under the context of the pattern recognition problem through the structure of radial basis function neural networks, with the use of the Representational Capability (RC) algorithm. Different sizes of datasets are disturbed with noise before being imported into the algorithm as ‘training/testing’ datasets. Each shapeless radial basis function is monitored carefully with effectiveness criteria including accuracy, condition More >

  • Open Access

    ARTICLE

    An Efficient Medical Image Deep Fusion Model Based on Convolutional Neural Networks

    Walid El-Shafai1,2, Noha A. El-Hag3, Ahmed Sedik4, Ghada Elbanby5, Fathi E. Abd El-Samie1, Naglaa F. Soliman6, Hussah Nasser AlEisa7,*, Mohammed E. Abdel Samea8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2905-2925, 2023, DOI:10.32604/cmc.2023.031936 - 31 October 2022

    Abstract Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy. Deep learning provides a high performance for several medical image analysis applications. This paper proposes a deep learning model for the medical image fusion process. This model depends on Convolutional Neural Network (CNN). The basic idea of the proposed model is to extract features from both CT and MR images. Then, an additional process is executed on the extracted features. After that, the fused feature map is reconstructed to obtain the resulting fused image. More >

  • Open Access

    ARTICLE

    Fractional Order Nonlinear Bone Remodeling Dynamics Using the Supervised Neural Network

    Narongsak Yotha1, Qusain Hiader2, Zulqurnain Sabir3, Muhammad Asif Zahoor Raja4, Salem Ben Said5, Qasem Al-Mdallal5, Thongchai Botmart6, Wajaree Weera6,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2415-2430, 2023, DOI:10.32604/cmc.2023.031352 - 31 October 2022

    Abstract This study aims to solve the nonlinear fractional-order mathematical model (FOMM) by using the normal and dysregulated bone remodeling of the myeloma bone disease (MBD). For the more precise performance of the model, fractional-order derivatives have been used to solve the disease model numerically. The FOMM is preliminarily designed to focus on the critical interactions between bone resorption or osteoclasts (OC) and bone formation or osteoblasts (OB). The connections of OC and OB are represented by a nonlinear differential system based on the cellular components, which depict stable fluctuation in the usual bone case and… More >

  • Open Access

    ARTICLE

    An Artificial Approach for the Fractional Order Rape and Its Control Model

    Wajaree Weera1, Zulqurnain Sabir2, Muhammad Asif Zahoor Raja3, Salem Ben Said4, Maria Emilia Camargo5, Chantapish Zamart1, Thongchai Botmart1,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3421-3438, 2023, DOI:10.32604/cmc.2023.030996 - 31 October 2022

    Abstract The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its control model using the strength of artificial neural networks (ANNs) along with the Levenberg-Marquardt backpropagation approach (LMBA), i.e., artificial neural networks-Levenberg-Marquardt backpropagation approach (ANNs-LMBA). The fractional order investigations have been presented to find more realistic results of the mathematical form of the rape and its control model. The differential mathematical form of the nonlinear fractional order mathematical rape and its control model has six classes: susceptible native girls, infected immature girls, susceptible knowledgeable girls, infected knowledgeable girls, susceptible rapist population… More >

  • Open Access

    ARTICLE

    Numerical Procedure for Fractional HBV Infection with Impact of Antibody Immune

    Sakda Noinang1, Zulqurnain Sabir2, Muhammad Asif Zahoor Raja3, Soheil Salahshour4, Wajaree Weera5,*, Thongchai Botmart5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2575-2588, 2023, DOI:10.32604/cmc.2023.029046 - 31 October 2022

    Abstract The current investigations are presented to solve the fractional order HBV differential infection system (FO-HBV-DIS) with the response of antibody immune using the optimization based stochastic schemes of the Levenberg-Marquardt backpropagation (LMB) neural networks (NNs), i.e., LMBNNs. The FO-HBV-DIS with the response of antibody immune is categorized into five dynamics, healthy hepatocytes (H), capsids (D), infected hepatocytes (I), free virus (V) and antibodies (W). The investigations for three different FO variants have been tested numerically to solve the nonlinear FO-HBV-DIS. The data magnitudes are implemented 75% for training, 10% for certification and 15% for testing More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Model for Real Time Hand Gestures Recognition

    S. Gnanapriya1,*, K. Rahimunnisa2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1105-1119, 2023, DOI:10.32604/iasc.2023.032832 - 29 September 2022

    Abstract The performance of Hand Gesture Recognition (HGR) depends on the hand shape. Segmentation helps in the recognition of hand gestures for more accuracy and improves the overall performance compared to other existing deep neural networks. The crucial segmentation task is extremely complicated because of the background complexity, variation in illumination etc. The proposed modified UNET and ensemble model of Convolutional Neural Networks (CNN) undergoes a two stage process and results in proper hand gesture recognition. The first stage is segmenting the regions of the hand and the second stage is gesture identification. The modified UNET More >

  • Open Access

    ARTICLE

    Neuro-Based Higher Order Sliding Mode Control for Perturbed Nonlinear Systems

    Ahmed M. Elmogy1,2,*, Wael M. Elawady2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 385-400, 2023, DOI:10.32604/iasc.2023.032349 - 29 September 2022

    Abstract One of the great concerns when tackling nonlinear systems is how to design a robust controller that is able to deal with uncertainty. Many researchers have been working on developing such type of controllers. One of the most efficient techniques employed to develop such controllers is sliding mode control (SMC). However, the low order SMC suffers from chattering problem which harm the actuators of the control system and thus unsuitable to be used in many practical applications. In this paper, the drawbacks of low order traditional sliding mode control (FOTSMC) are resolved by presenting a… More >

  • Open Access

    ARTICLE

    Activation Functions Effect on Fractal Coding Using Neural Networks

    Rashad A. Al-Jawfi*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 957-965, 2023, DOI:10.32604/iasc.2023.031700 - 29 September 2022

    Abstract Activation functions play an essential role in converting the output of the artificial neural network into nonlinear results, since without this nonlinearity, the results of the network will be less accurate. Nonlinearity is the mission of all nonlinear functions, except for polynomials. The activation function must be differentiable for backpropagation learning. This study’s objective is to determine the best activation functions for the approximation of each fractal image. Different results have been attained using Matlab and Visual Basic programs, which indicate that the bounded function is more helpful than other functions. The non-linearity of the… More >

Displaying 241-250 on page 25 of 481. Per Page