Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (341)
  • Open Access

    ARTICLE

    An Adversarial Network-based Multi-model Black-box Attack

    Bin Lin1, Jixin Chen2, Zhihong Zhang3, Yanlin Lai2, Xinlong Wu2, Lulu Tian4, Wangchi Cheng5,*

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 641-649, 2021, DOI:10.32604/iasc.2021.016818

    Abstract Researches have shown that Deep neural networks (DNNs) are vulnerable to adversarial examples. In this paper, we propose a generative model to explore how to produce adversarial examples that can deceive multiple deep learning models simultaneously. Unlike most of popular adversarial attack algorithms, the one proposed in this paper is based on the Generative Adversarial Networks (GAN). It can quickly produce adversarial examples and perform black-box attacks on multi-model. To enhance the transferability of the samples generated by our approach, we use multiple neural networks in the training process. Experimental results on MNIST showed that our method can efficiently generate… More >

  • Open Access

    ARTICLE

    A Step-Based Deep Learning Approach for Network Intrusion Detection

    Yanyan Zhang1, Xiangjin Ran2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1231-1245, 2021, DOI:10.32604/cmes.2021.016866

    Abstract In the network security field, the network intrusion detection system (NIDS) is considered one of the critical issues in the detection accuracy and missed detection rate. In this paper, a method of two-step network intrusion detection on the basis of GoogLeNet Inception and deep convolutional neural networks (CNNs) models is proposed. The proposed method used the GoogLeNet Inception model to identify the network packets’ binary problem. Subsequently, the characteristics of the packets’ raw data and the traffic features are extracted. The CNNs model is also used to identify the multiclass intrusions by the network packets’ features. In the experimental results,… More >

  • Open Access

    ARTICLE

    Global and Graph Encoded Local Discriminative Region Representation for Scene Recognition

    Chaowei Lin1,#, Feifei Lee1,#,*, Jiawei Cai1, Hanqing Chen1, Qiu Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 985-1006, 2021, DOI:10.32604/cmes.2021.014522

    Abstract Scene recognition is a fundamental task in computer vision, which generally includes three vital stages, namely feature extraction, feature transformation and classification. Early research mainly focuses on feature extraction, but with the rise of Convolutional Neural Networks (CNNs), more and more feature transformation methods are proposed based on CNN features. In this work, a novel feature transformation algorithm called Graph Encoded Local Discriminative Region Representation (GEDRR) is proposed to find discriminative local representations for scene images and explore the relationship between the discriminative regions. In addition, we propose a method using the multi-head attention module to enhance and fuse convolutional… More >

  • Open Access

    ARTICLE

    Exploiting Rich Event Representation to Improve Event Causality Recognition

    Gaigai Jin1, Junsheng Zhou1,*, Weiguang Qu1, Yunfei Long2, Yanhui Gu1

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 161-173, 2021, DOI:10.32604/iasc.2021.017440

    Abstract Event causality identification is an essential task for information extraction that has attracted growing attention. Early researchers were accustomed to combining the convolutional neural network or recurrent neural network models with external causal knowledge, but these methods ignore the importance of rich semantic representation of the event. The event is more structured, so it has more abundant semantic representation. We argue that the elements of the event, the interaction of the two events, and the context between the two events can enrich the event’s semantic representation and help identify event causality. Therefore, the effective semantic representation of events in event… More >

  • Open Access

    ARTICLE

    A Multi-Task Network for Cardiac Magnetic Resonance Image Segmentation and Classification

    Jing Peng1,2,4, Chaoyang Xia2, Yuanwei Xu3, Xiaojie Li2, Xi Wu2, Xiao Han1,4, Xinlai Chen5, Yucheng Chen3, Zhe Cui1,4,*

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 259-272, 2021, DOI:10.32604/iasc.2021.016749

    Abstract Cardiomyopathy is a group of diseases that affect the heart and can cause serious health problems. Segmentation and classification are important for automating the clinical diagnosis and treatment planning for cardiomyopathy. However, this automation is difficult because of the poor quality of cardiac magnetic resonance (CMR) imaging data and varying dimensions caused by movement of the ventricle. To address these problems, a deep multi-task framework based on a convolutional neural network (CNN) is proposed to segment the left ventricle (LV) myocardium and classify cardiopathy simultaneously. The proposed model consists of a longitudinal encoder–decoder structure that obtains high- and low-level features… More >

  • Open Access

    ARTICLE

    Intrusion Detection Using a New Hybrid Feature Selection Model

    Adel Hamdan Mohammad*

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 65-80, 2021, DOI:10.32604/iasc.2021.016140

    Abstract Intrusion detection is an important topic that aims at protecting computer systems. Besides, feature selection is crucial for increasing the performance of intrusion detection. This paper employs a new hybrid feature selection model for intrusion detection. The implemented model uses Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) algorithms in a new manner. In addition, this study introduces two new models called (PSO-GWO-NB) and (PSO-GWO-ANN) for feature selection and intrusion detection. PSO and GWO show emergent results in feature selection for several purposes and applications. This paper uses PSO and GWO to select features for the intrusion detection system.… More >

  • Open Access

    ARTICLE

    Forecasting Model of Photovoltaic Power Based on KPCA-MCS-DCNN

    Huizhi Gou1,2,*, Yuncai Ning1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 803-822, 2021, DOI:10.32604/cmes.2021.015922

    Abstract Accurate photovoltaic (PV) power prediction can effectively help the power sector to make rational energy planning and dispatching decisions, promote PV consumption, make full use of renewable energy and alleviate energy problems. To address this research objective, this paper proposes a prediction model based on kernel principal component analysis (KPCA), modified cuckoo search algorithm (MCS) and deep convolutional neural networks (DCNN). Firstly, KPCA is utilized to reduce the dimension of the feature, which aims to reduce the redundant input vectors. Then using MCS to optimize the parameters of DCNN. Finally, the photovoltaic power forecasting method of KPCA-MCS-DCNN is established. In… More >

  • Open Access

    ARTICLE

    Microphone Array Speech Separation Algorithm Based on TC-ResNet

    Lin Zhou1,*, Yue Xu1, Tianyi Wang1, Kun Feng1, Jingang Shi2

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2705-2716, 2021, DOI:10.32604/cmc.2021.017080

    Abstract Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio (SNR) environments, and thus achieve unsatisfactory results. In this study, a convolutional neural network with temporal convolution and residual network (TC-ResNet) is proposed to realize speech separation in a complex acoustic environment. A simplified steered-response power phase transform, denoted as GSRP-PHAT, is employed to reduce the computational cost. The extracted features are reshaped to a special tensor as the system inputs and implements temporal convolution, which not only enlarges the receptive field of the convolution layer but also significantly reduces the… More >

  • Open Access

    ARTICLE

    An Attention Based Neural Architecture for Arrhythmia Detection and Classification from ECG Signals

    Nimmala Mangathayaru1,*, Padmaja Rani2, Vinjamuri Janaki3, Kalyanapu Srinivas4, B. Mathura Bai1, G. Sai Mohan1, B. Lalith Bharadwaj1

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2425-2443, 2021, DOI:10.32604/cmc.2021.016534

    Abstract Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine. Detecting arrhythmia from ECG signals is considered a standard approach and hence, automating this process would aid the diagnosis by providing fast, cost-efficient, and accurate solutions at scale. This is executed by extracting the definite properties from the individual patterns collected from Electrocardiography (ECG) signals causing arrhythmia. In this era of applied intelligence, automated detection and diagnostic solutions are widely used for their spontaneous and robust solutions. In this research, our contributions are two-fold. Firstly, the Dual-Tree Complex Wavelet Transform (DT-CWT) method is implied… More >

  • Open Access

    ARTICLE

    Deep Neural Networks Based Approach for Battery Life Prediction

    Sweta Bhattacharya1, Praveen Kumar Reddy Maddikunta1, Iyapparaja Meenakshisundaram1, Thippa Reddy Gadekallu1, Sparsh Sharma2, Mohammed Alkahtani3, Mustufa Haider Abidi4,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2599-2615, 2021, DOI:10.32604/cmc.2021.016229

    Abstract The Internet of Things (IoT) and related applications have witnessed enormous growth since its inception. The diversity of connecting devices and relevant applications have enabled the use of IoT devices in every domain. Although the applicability of these applications are predominant, battery life remains to be a major challenge for IoT devices, wherein unreliability and shortened life would make an IoT application completely useless. In this work, an optimized deep neural networks based model is used to predict the battery life of the IoT systems. The present study uses the Chicago Park Beach dataset collected from the publicly available data… More >

Displaying 241-250 on page 25 of 341. Per Page