Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Real-Time Fault Detection and Isolation in Power Systems for Improved Digital Grid Stability Using an Intelligent Neuro-Fuzzy Logic

    Zuhaib Nishtar1,*, Fangzong Wang1, Fawwad Hassan Jaskani2, Hussain Afzaal3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2919-2956, 2025, DOI:10.32604/cmes.2025.065098 - 30 June 2025

    Abstract This research aims to address the challenges of fault detection and isolation (FDI) in digital grids, focusing on improving the reliability and stability of power systems. Traditional fault detection techniques, such as rule-based fuzzy systems and conventional FDI methods, often struggle with the dynamic nature of modern grids, resulting in delays and inaccuracies in fault classification. To overcome these limitations, this study introduces a Hybrid Neuro-Fuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic. The model’s performance was evaluated through extensive simulations on the… More >

  • Open Access

    ARTICLE

    Applications of Advanced Optimized Neuro Fuzzy Models for Enhancing Daily Suspended Sediment Load Prediction

    Rana Muhammad Adnan1,2, Mo Wang1,*, Adil Masood3, Ozgur Kisi4,5,6,*, Shamsuddin Shahid7, Mohammad Zounemat-Kermani8

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1249-1272, 2025, DOI:10.32604/cmes.2025.062339 - 11 April 2025

    Abstract Accurate daily suspended sediment load (SSL) prediction is essential for sustainable water resource management, sediment control, and environmental planning. However, SSL prediction is highly complex due to its nonlinear and dynamic nature, making traditional empirical models inadequate. This study proposes a novel hybrid approach, integrating the Adaptive Neuro-Fuzzy Inference System (ANFIS) with the Gradient-Based Optimizer (GBO), to enhance SSL forecasting accuracy. The research compares the performance of ANFIS-GBO with three alternative models: standard ANFIS, ANFIS with Particle Swarm Optimization (ANFIS-PSO), and ANFIS with Grey Wolf Optimization (ANFIS-GWO). Historical SSL and streamflow data from the Bailong… More >

  • Open Access

    ARTICLE

    Drone-Based Public Surveillance Using 3D Point Clouds and Neuro-Fuzzy Classifier

    Yawar Abbas1, Aisha Ahmed Alarfaj2, Ebtisam Abdullah Alabdulqader3, Asaad Algarni4, Ahmad Jalal1,5, Hui Liu6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4759-4776, 2025, DOI:10.32604/cmc.2025.059224 - 06 March 2025

    Abstract Human Activity Recognition (HAR) in drone-captured videos has become popular because of the interest in various fields such as video surveillance, sports analysis, and human-robot interaction. However, recognizing actions from such videos poses the following challenges: variations of human motion, the complexity of backdrops, motion blurs, occlusions, and restricted camera angles. This research presents a human activity recognition system to address these challenges by working with drones’ red-green-blue (RGB) videos. The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while… More >

  • Open Access

    ARTICLE

    Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

    Yi-Chun Lai1, Shu-Yin Chiang2, Yao-Chiang Kan3, Hsueh-Chun Lin4,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3783-3803, 2024, DOI:10.32604/cmc.2024.050376 - 20 June 2024

    Abstract Artificial intelligence (AI) technology has become integral in the realm of medicine and healthcare, particularly in human activity recognition (HAR) applications such as fitness and rehabilitation tracking. This study introduces a robust coupling analysis framework that integrates four AI-enabled models, combining both machine learning (ML) and deep learning (DL) approaches to evaluate their effectiveness in HAR. The analytical dataset comprises 561 features sourced from the UCI-HAR database, forming the foundation for training the models. Additionally, the MHEALTH database is employed to replicate the modeling process for comparative purposes, while inclusion of the WISDM database, renowned… More > Graphic Abstract

    Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition

  • Open Access

    ARTICLE

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

    Mustafa Sami Abdullatef*, Faten N. Alzubaidi, Anees Al-Tamimi, Yasser Ahmed Mahmood

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2083-2107, 2023, DOI:10.32604/fdmp.2023.027266 - 04 April 2023

    Abstract The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure. The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios (). Artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support-vector machines (SVM), a random forest model (RF), and an extreme-gradient tree-boosting model (XGB) are trained using numerical and experimental input… More > Graphic Abstract

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

  • Open Access

    ARTICLE

    Data Analytics on Unpredictable Pregnancy Data Records Using Ensemble Neuro-Fuzzy Techniques

    C. Vairavel1,*, N. S. Nithya2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2159-2175, 2023, DOI:10.32604/csse.2023.036598 - 09 February 2023

    Abstract The immune system goes through a profound transformation during pregnancy, and certain unexpected maternal complications have been correlated to this transition. The ability to correctly examine, diagnoses, and predict pregnancy-hastened diseases via the available big data is a delicate problem since the range of information continuously increases and is scalable. Many approaches for disease diagnosis/classification have been established with the use of data mining concepts. However, such methods do not provide an appropriate classification/diagnosis model. Furthermore, single learning approaches are used to create the bulk of these systems. Classification issues may be made more accurate… More >

  • Open Access

    ARTICLE

    An Automatic Threshold Selection Using ALO for Healthcare Duplicate Record Detection with Reciprocal Neuro-Fuzzy Inference System

    Ala Saleh Alluhaidan1,*, Pushparaj2, Anitha Subbappa3, Ved Prakash Mishra4, P. V. Chandrika5, Anurika Vaish6, Sarthak Sengupta6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5821-5836, 2023, DOI:10.32604/cmc.2023.033995 - 28 December 2022

    Abstract ESystems based on EHRs (Electronic health records) have been in use for many years and their amplified realizations have been felt recently. They still have been pioneering collections of massive volumes of health data. Duplicate detections involve discovering records referring to the same practical components, indicating tasks, which are generally dependent on several input parameters that experts yield. Record linkage specifies the issue of finding identical records across various data sources. The similarity existing between two records is characterized based on domain-based similarity functions over different features. De-duplication of one dataset or the linkage of… More >

  • Open Access

    ARTICLE

    An Adaptive Neuro-Fuzzy Inference System to Improve Fractional Order Controller Performance

    N. Kanagaraj*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3213-3226, 2023, DOI:10.32604/iasc.2023.029901 - 17 August 2022

    Abstract The design and analysis of a fractional order proportional integral derivate (FOPID) controller integrated with an adaptive neuro-fuzzy inference system (ANFIS) is proposed in this study. A first order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme. In the proposed adaptive control structure, the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors (λ and µ) of the FOPID (also known as PIλDµ) controller to achieve better control performance. When the plant experiences uncertainties like external load disturbances or sudden changes in the… More >

  • Open Access

    ARTICLE

    Training Neuro-Fuzzy by Using Meta-Heuristic Algorithms for MPPT

    Ceren Baştemur Kaya1, Ebubekir Kaya2,*, Göksel Gökkuş3

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 69-84, 2023, DOI:10.32604/csse.2023.030598 - 16 August 2022

    Abstract It is one of the topics that have been studied extensively on maximum power point tracking (MPPT) recently. Traditional or soft computing methods are used for MPPT. Since soft computing approaches are more effective than traditional approaches, studies on MPPT have shifted in this direction. This study aims comparison of performance of seven meta-heuristic training algorithms in the neuro-fuzzy training for MPPT. The meta-heuristic training algorithms used are particle swarm optimization (PSO), harmony search (HS), cuckoo search (CS), artificial bee colony (ABC) algorithm, bee algorithm (BA), differential evolution (DE) and flower pollination algorithm (FPA). The… More >

  • Open Access

    ARTICLE

    Intelligent Medical Diagnostic System for Hepatitis B

    Dalwinder Singh1, Deepak Prashar1, Jimmy Singla1, Arfat Ahmad Khan2, Mohammed Al-Sarem3,4,*, Neesrin Ali Kurdi3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6047-6068, 2022, DOI:10.32604/cmc.2022.031255 - 28 July 2022

    Abstract The hepatitis B virus is the most deadly virus, which significantly affects the human liver. The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage; otherwise, it will become a severe problem and make a human liver suffer from the most dangerous diseases, such as liver cancer. In this paper, two medical diagnostic systems are developed for the diagnosis of this life-threatening virus. The methodologies used to develop these models are fuzzy logic and the neuro-fuzzy technique. The diverse… More >

Displaying 1-10 on page 1 of 25. Per Page