Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems

    Xuechuan Wang1, Wei He1,*, Haoyang Feng1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1263-1294, 2024, DOI:10.32604/cmes.2023.043068

    Abstract Although predictor-corrector methods have been extensively applied, they might not meet the requirements of practical applications and engineering tasks, particularly when high accuracy and efficiency are necessary. A novel class of correctors based on feedback-accelerated Picard iteration (FAPI) is proposed to further enhance computational performance. With optimal feedback terms that do not require inversion of matrices, significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts; however, the computational complexities are comparably low. These advantages enable nonlinear engineering problems to be solved quickly and accurately, even with rough initial guesses from elementary predictors.… More > Graphic Abstract

    Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems

  • Open Access

    ARTICLE

    Synchronization Phenomena Investigation of a New Nonlinear Dynamical System 4D by Gardano’s and Lyapunov’s Methods

    Abdulsattar Abdullah Hamad1, Ahmed S. Al-Obeidi2, Enas H. Al-Taiy2, Osamah Ibrahim Khalaf3, Dac-Nhuong Le4,5,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3311-3327, 2021, DOI:10.32604/cmc.2021.013395

    Abstract Synchronization is one of the most important characteristics of dynamic systems. For this paper, the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems. The findings have allowed authors to develop two analytical approaches using the second Lyapunov (Lyp) method and the Gardano method. Since the Gardano method does not involve the development of special positive Lyp functions, it is very efficient and convenient to achieve excessive system SYCR phenomena. Error is overcome by using Gardano and overcoming some problems in Lyp. Thus we get a great investigation into the convergence of error… More >

  • Open Access

    ARTICLE

    A Unification of the Concepts of the Variational Iteration, Adomian Decomposition and Picard Iteration Methods; and a Local Variational Iteration Method

    Xuechuan Wang1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.6, pp. 567-585, 2016, DOI:10.3970/cmes.2016.111.567

    Abstract This paper compares the variational iteration method (VIM), the Adomian decomposition method (ADM) and the Picard iteration method (PIM) for solving a system of first order nonlinear ordinary differential equations (ODEs). A unification of the concepts underlying these three methods is attempted by considering a very general iterative algorithm for VIM. It is found that all the three methods can be regarded as special cases of using a very general matrix of Lagrange multipliers in the iterative algorithm of VIM. The global variational iteration method is briefly reviewed, and further recast into a Local VIM, which is much more convenient… More >

  • Open Access

    ARTICLE

    Disclosing the Complexity of Nonlinear Ship Rolling and Duffing Oscillators by a Signum Function

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.4, pp. 375-407, 2014, DOI:10.3970/cmes.2014.098.375

    Abstract In this paper we study the nonlinear dynamical system x·=f(x,t) from a newly developed theory, viewing the time-varying function of sign(||f||2||x||2− 2(f·x)2) = −sign(cos 2θ) as a key factor, where θ is the intersection angle between x and f. It together with sign(cos θ) can reveal the complexity of nonlinear Duffing oscillator and a quadratic ship rolling oscillator. The barcode is formed by plotting sign(||f||2||x||2− 2(f·x)2) with respect to time. We analyze the barcode to point out the bifurcation of subharmonic motions and the range of chaos in the parameter space. The bifurcation diagram obtained by plotting the percentage… More >

  • Open Access

    ARTICLE

    A Simple, Fast, and Accurate Time-Integrator for Strongly Nonlinear Dynamical Systems

    T.A. Elgohary1,2, L. Dong3, J.L. Junkins2,4, S.N. Atluri1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.3, pp. 249-275, 2014, DOI:10.3970/cmes.2014.100.249

    Abstract In this study, we consider Initial Value Problems (IVPs) for strongly nonlinear dynamical systems, and study numerical methods to analyze short as well as long-term responses. Dynamical systems characterized by a system of second-order nonlinear ordinary differential equations (ODEs) are recast into a system of nonlinear first order ODEs in mixed variables of positions as well as velocities. For each discrete-time interval Radial Basis Functions (RBFs) are assumed as trial functions for the mixed variables in the time domain. A simple collocation method is developed in the time-domain, with Legendre-Gauss-Lobatto nodes as RBF source points as well as collocation points.… More >

  • Open Access

    ARTICLE

    A New Modified Adomian Decomposition Method for Higher-Order Nonlinear Dynamical Systems

    Jun-Sheng Duan1,2, Randolph Rach3, Abdul-Majid Wazwaz4

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.1, pp. 77-118, 2013, DOI:10.3970/cmes.2013.094.077

    Abstract In this paper, we propose a new modification of the Adomian decomposition method for solution of higher-order nonlinear initial value problems with variable system coefficients and solutions of systems of coupled nonlinear initial value problems. We consider various algorithms for the Adomian decomposition series and the series of Adomian polynomials to calculate the solutions of canonical first- and second-order nonlinear initial value problems in order to derive a systematic algorithm for the general case of higher-order nonlinear initial value problems and systems of coupled higher-order nonlinear initial value problems. Our new modified recursion scheme is designed to decelerate the Adomian… More >

  • Open Access

    ARTICLE

    Preserving Constraints of Differential Equations by Numerical Methods Based on Integrating Factors

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.2, pp. 83-108, 2006, DOI:10.3970/cmes.2006.012.083

    Abstract The system we consider consists of two parts: a purely algebraic system describing the manifold of constraints and a differential part describing the dynamics on this manifold. For the constrained dynamical problem in its engineering application, it is utmost important to developing numerical methods that can preserve the constraints. We embed the nonlinear dynamical system with dimensions n and with k constraints into a mathematically equivalent n + k-dimensional nonlinear system, which including k integrating factors. Each subsystem of the k independent sets constitutes a Lie type system of X˙i = AiXi with Aiso(ni,1) and n1 +···+nkMore >

  • Open Access

    ARTICLE

    The Fourth-Order Group Preserving Methods for the Integrations of Ordinary Differential Equations

    Hung-Chang Lee1, Chein-Shan Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.1, pp. 1-26, 2009, DOI:10.3970/cmes.2009.041.001

    Abstract The group-preserving schemes developed by Liu (2001) for integrating ordinary differential equations system were adopted the Cayley transform and Padé approximants to formulate the Lie group from its Lie algebra. However, the accuracy of those schemes is not better than second-order. In order to increase the accuracy by employing the group-preserving schemes on ordinary differential equations, according to an efficient technique developed by Runge and Kutta to raise the order of accuracy from the Euler method, we combine the Runge-Kutta method on the group-preserving schemes to obtain the higher-order numerical methods of group-preserving type. They provide single-step explicit time integrators… More >

  • Open Access

    ARTICLE

    Structured Adaptive Control for Poorly Modeled Nonlinear Dynamical Systems

    John L. Junkins1, Kamesh Subbarao2, Ajay Verma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.4, pp. 99-118, 2000, DOI:10.3970/cmes.2000.001.551

    Abstract Model reference adaptive control formulations are presented that rigorously impose the dynamical structure of the state space descriptions of several distinct large classes of dynamical systems. Of particular interest, the formulations enable the imposition of exact kinematic differential equation constraints upon the adaptation process that compensates for model errors and disturbances at the acceleration level. Other adaptive control formulations are tailored for redundantly actuated and constrained dynamical systems. The utility of the resulting structured adaptive control formulations is studied by considering examples from nonlinear oscillations, aircraft control, spacecraft control, and cooperative robotic system control. The theoretical and computational results provide… More >

  • Open Access

    ARTICLE

    Anomaly Detection

    Nadipuram R. Prasad1, Salvador Almanza-Garcia1, Thomas T. Lu2

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 1-22, 2009, DOI:10.3970/cmc.2009.014.001

    Abstract The paper presents a revolutionary framework for the modeling, detection, characterization, identification, and machine-learning of anomalous behavior in observed phenomena arising from a large class of unknown and uncertain dynamical systems. An evolved behavior would in general be very difficult to correct unless the specific anomalous event that caused such behavior can be detected early, and any consequence attributed to the specific anomaly following its detection. Substantial investigative time and effort is required to back-track the cause for abnormal behavior and to recreate the event sequence leading to such abnormal behavior. The need to automatically detect anomalous behavior is therefore… More >

Displaying 1-10 on page 1 of 10. Per Page