Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Addition Formulas of Leaf Functions and Hyperbolic Leaf Functions

    Kazunori Shinohara*

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 441-473, 2020, DOI:10.32604/cmes.2020.08656

    Abstract Addition formulas exist in trigonometric functions. Double-angle and half-angle formulas can be derived from these formulas. Moreover, the relation equation between the trigonometric function and the hyperbolic function can be derived using an imaginary number. The inverse hyperbolic function is similar to the inverse trigonometric function , such as the second degree of a polynomial and the constant term 1, except for the sign − and +. Such an analogy holds not only when the degree of the polynomial is 2, but also for higher degrees. As such, a function exists with respect… More >

  • Open Access

    ARTICLE

    Damped and Divergence Exact Solutions for the Duffing Equation Using Leaf Functions and Hyperbolic Leaf Functions

    Kazunori Shinohara1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 599-647, 2019, DOI:10.31614/cmes.2019.04472

    Abstract According to the wave power rule, the second derivative of a function x(t) with respect to the variable t is equal to negative n times the function x(t) raised to the power of 2n-1. Solving the ordinary differential equations numerically results in waves appearing in the figures. The ordinary differential equation is very simple; however, waves, including the regular amplitude and period, are drawn in the figure. In this study, the function for obtaining the wave is called the leaf function. Based on the leaf function, the exact solutions for the undamped and unforced Duffing equations are presented. In the… More >

  • Open Access

    ARTICLE

    Exact Solutions of the Cubic Duffing Equation by Leaf Functions under Free Vibration

    Kazunori Shinohara1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.2, pp. 149-215, 2018, DOI: 10.3970/cmes.2018.02179

    Abstract Exact solutions of the cubic Duffing equation with the initial conditions are presented. These exact solutions are expressed in terms of leaf functions and trigonometric functions. The leaf function r=sleafn(t) or r=cleafn(t) satisfies the ordinary differential equation dx2/dt2=-nr2n-1. The second-order differential of the leaf function is equal to -n times the function raised to the (2n-1) power of the leaf function. By using the leaf functions, the exact solutions of the cubic Duffing equation can be derived under several conditions. These solutions are constructed using the integral functions of leaf functions sleaf2(t) and cleaf2(t) for the phase of a trigonometric… More >

  • Open Access

    ABSTRACT

    A Novel Perturbed Dynamical Method for Solving Singular Systems of Nonlinear Equations

    Cheng-Yu Ku, Chein-Shan Liu, Weichung Yeih, Chia-Ming Fan

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.2, pp. 33-34, 2011, DOI:10.3970/icces.2011.019.033

    Abstract In this paper, a novel method, named the perturbed dynamical method, is proposed to solve nonlinear systems whose Jacobian matrix is singular. The concept of the proposed method roots from the conventional homotopy method but it takes the advantages of converting a vector function to a scalar function by using the square norm of the vector function to conduct a scalar-based homotopy method. Then, a small parameter, which is similar to the perturbation theory, is introduced to the singular systems of nonlinear equations such that the modified singular systems of nonlinear equations become nonsingular and the asymptotic solutions may be… More >

  • Open Access

    ARTICLE

    A Novel Method for Solving One-, Two- and Three-Dimensional Problems with Nonlinear Equation of the Poisson Type

    S.Yu. Reutskiy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.4, pp. 355-386, 2012, DOI:10.3970/cmes.2012.087.355

    Abstract The paper presents a new meshless numerical technique for solving nonlinear Poisson-type equation 2u = f (x) + F(u,x) for x ∈ Rd, d =1,2,3. We assume that the nonlinear term can be represented as a linear combination of basis functions F(u,x) = ∑mMqmφm. We use the basis functions φm of three types: the the monomials, the trigonometric functions and the multiquadric radial basis functions. For basis functions φm of each kind there exist particular solutions of the equation 2ϕm = φm in an analytic form. This permits to write the approximate solution in the form uM = ufMore >

  • Open Access

    ARTICLE

    Dynamical Newton-Like Methods for Solving Ill-Conditioned Systems of Nonlinear Equations with Applications to Boundary Value Problems

    Cheng-Yu Ku1,2,3,Weichung Yeih1,2, Chein-Shan Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.76, No.2, pp. 83-108, 2011, DOI:10.3970/cmes.2011.076.083

    Abstract In this paper, a general dynamical method based on the construction of a scalar homotopy function to transform a vector function of Non-Linear Algebraic Equations (NAEs) into a time-dependent scalar function by introducing a fictitious time-like variable is proposed. With the introduction of a transformation matrix, the proposed general dynamical method can be transformed into several dynamical Newton-like methods including the Dynamical Newton Method (DNM), the Dynamical Jacobian-Inverse Free Method (DJIFM), and the Manifold-Based Exponentially Convergent Algorithm (MBECA). From the general dynamical method, we can also derive the conventional Newton method using a certain fictitious time-like function. The formulation presented… More >

  • Open Access

    ARTICLE

    Micromechanics Based Stress-Displacement Relationships of Rough Contacts: Numerical Implementation under Combined Normal and Shear Loading

    Anil Misra1, Shiping Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.2, pp. 197-216, 2009, DOI:10.3970/cmes.2009.052.197

    Abstract The behavior of contact between solid bodies with rough surfaces under combined normal and shear loading remains a problem of interest in many areas of engineering. In this paper, we have utilized a micromechanical methodology to derive an expression of stress-displacement relationship applicable to combined normal and shear loading conditions. The micromechanical methodology considers the mechanics of asperity contacts and the interface roughness in terms of asperity height and asperity contact orientation distribution. A numerical procedure is implemented to evaluate the derived expressions under complex and mixed loading conditions using an incremental approach. We find that the proposed numerical procedure… More >

  • Open Access

    ARTICLE

    Application of the Differential Transform Method for Solving Periodic Solutions of Strongly Non-linear Oscillators

    Hsin-Ping Chu1, Cheng-Ying Lo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 161-172, 2011, DOI:10.3970/cmes.2011.077.161

    Abstract This paper presents the application of the differential transform method to solve strongly nonlinear equations with cubic nonlinearities and self-excitation terms. First, the equations are transformed by the differential transform method into the algebra equations in terms of the transformed functions. Secondly, the higher-order transformed functions are calculated in terms of other lower-order transformed functions through the iterative procedure. Finally, the solutions are approximated by the n-th partial sum of the infinite series obtained by the inverse differential transform. Two strongly nonlinear equations with different coefficients and initial conditions are given as illustrative examples. More >

Displaying 11-20 on page 2 of 18. Per Page