Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    Numerical Investigation of a Vibroacoustic Analysis with Different Formulations

    M. Amdi1, M. Souli1, J. Hargreaves2, F. Erchiqui3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.4, pp. 329-346, 2012, DOI:10.3970/cmes.2012.085.329

    Abstract Simulation of vibroacoustic problems becomes more and more the focus of engineering in the last decades for acoustic comfort in automotive industry to reduce noise and vibration inside a cabin and also in sport industry to analyze sound produced by a club impacting a golf ball to avoid unexpected noise problems during the design process. Traditionally, Finite element and Boundary element methods are used in frequency domain to model pressure noise from structure vibration in low and mid frequency range. These methods require velocity in frequency domain on the vibrating structure as boundary conditions. To… More >

  • Open Access

    ARTICLE

    Fluid Structure Interaction for Bird Impact Problem: Experimental and Numerical Investigation

    Souli, M.1, Gabrys, J.2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 177-192, 2012, DOI:10.3970/cmes.2012.085.177

    Abstract Bird impacts on aircraft are very common and cause significant safety threats to commercial and military aircraft. According to FAA ( Federal American Aviation) regulations, aircraft should be able to land safely following specified types of bird impact on components such as radomes, windshields, engines leading edge structures and other exposed components. Thus exposed components are required to be certified for bird impact. In order to evaluate whether the aircraft is compliant to FAA requirements, several experimental tests and numerical simulations of bird impact on components need to be preformed. This paper presents an experimental More >

  • Open Access

    ARTICLE

    Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure Walls at Various Inclination Angles

    C.S. Nor Azwadi1, N.I.N. Izual2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.6, pp. 559-574, 2012, DOI:10.3970/cmes.2012.084.559

    Abstract Natural convection in a differentially heated enclosure plays vital role in engineering applications such as nuclear reactor, electronic cooling technologies, roof ventilation, etc. The developed thermal flow patterns induced by the density difference are expected to be critically dependence on the inclination angles of the cavity. Hence, thermal and fluid flow pattern inside a differentially heated side enclosure walls with various inclination angles have been investigated numerically using the mesoscale lattice Boltzmann scheme. Three different dimensionless Rayleigh numbers were used, and a dimensionless Prandtl number of 0.71 was set to simulate the circulation of air More >

  • Open Access

    ARTICLE

    Numerical Investigation on Dynamical Response of Aluminum Foam Subject to Hypervelocity Impact With Material Point Method

    Weiwei Gong, Yan Liu, Xiong Zhang, Honglei Ma

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 527-546, 2012, DOI:10.3970/cmes.2012.083.527

    Abstract Owing to its low density and good energy absorption capability, aluminum foam is an excellent protective material for spacecraft against debris impact. However, because of its complicated microstructure, it is very difficult to generate a FEM mesh accounting for the real microstructure of the alluminum foam. On the contrary, it is very easy to model three-dimensional problems with very complicated geometry with meshfree/meshless methods. Furthermore, the material point method has obvious advantages in modeling problems involving extreme large deformation problems like hypervelocity impact problem. In this paper, a three-dimensional material point model accounting for the More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation of Instructions for Hyperelastic Membrane Inflation Using Fluid Structure Coupling

    M.Souli1, F.Erchiqui2

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 183-200, 2011, DOI:10.3970/cmes.2011.077.183

    Abstract During the design process of membrane structure to resist to high pressure loading, and the characterization of hyperelastic material, a structure made up of thin rubber undergoes large deformation and rotation under high pressure loading out of high pressurized gas. Until recently, to simulate the inflation of the hyperelastic membrane, a uniform pressure based on thermodynamic model or experimental tests is applied to the structure, as boundary conditions. From a computational time point of view, this approach is very fast, since no computational fluid dynamics is involved in the simulation. However, at the late stage… More >

  • Open Access

    ARTICLE

    A Numerical Investigation of Boumerdes-Zemmouri (Algeria) Earthquake and Tsunami

    Xiaoming Wang1, Philip L.-F. Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.2, pp. 171-184, 2005, DOI:10.3970/cmes.2005.010.171

    Abstract On May 21, 2003 Boumerdes-Zemmouri (Algeria) earthquake generated a small tsunami, which was recorded at several locations around the coast of Balearic Islands, Spain. Recent field studies (Meghraoui, et al., 2004) and teleseismic wave analysis (Yiga, 2003) indicated that the earthquake magnitude is stronger than that suggested by the Harvard CMT solution. Moreover, the seafloor displacement is also not uniform along the rupture line. In this paper, we perform a numerical investigation to evaluate the accuracy of various suggested fault plane mechanisms. The numerical model is based on the shallow-water equations and numerical results are compared More >

  • Open Access

    ARTICLE

    Numerical Investigation of Combined Surface Radiation and Free Convection in a Square Enclosure with an Inside Finned Heater

    Hamici Nadjib1, Sahi Adel1,*, Sadaoui Djamel1, Djerrada Abderrahmane1

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.3, pp. 155-175, 2018, DOI:10.3970/fdmp.2018.01114

    Abstract The study goes further to investigate a two-dimensional numerical model coupling free convection and surface radiation in an air-filled cavity containing a heated thin finned plate. The square enclosure is subjected to isothermal and insulated boundary conditions while the heating element location is varied from the horizontal position (HPFU, HPFD) to the vertical position (VPFL). The dimensionless governing equations under Boussinesq approximations are coupled with a radiative model through the boundaries conditions and solved by the Finite Volume Method. The effects of the pertinent parameters, namely, Rayleigh number (103≤Ra≤106), fin length (0.125≤La≤0.875), fin position (0.25≤Ha≤0.75) and wall emissivity More >

  • Open Access

    ARTICLE

    Three-Dimensional Numerical Investigation of Convective Thermal Instabilities in the Sapphire Melt for Czochralski Growth Process

    H. Azoui1, D. Bahloul1,*, N. Soltani2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.2, pp. 87-105, 2018, DOI:10.3970/fdmp.2018.01149

    Abstract In this work we have performed a three-dimensional numerical investigation in order to find the optimal conditions for growing efficiently high quality sapphire crystals with good thermal properties. We have studied thermal instabilities near the melt-crystal interface and the convective heat transfer under the Czochralski (Cz) process. We performed 3-D CFD simulation in cylindrical coordinates and used the Fast Fourier Transform method to analyze the temperature fluctuations. We present a detailed investigation on the effects of the crystal rotation speed and the temperature distribution on thermal instabilities of sapphire melt under forced convection. Where the More >

  • Open Access

    ARTICLE

    Numerical Investigation Of Flow Dynamic In Mini- Channel: Case Of A Mini Diode Tesla

    Brahim DENNAI1*, Mohammed EL Bizani BELBOUKHARI1 , Tawfiq CHEKIFI1, Rachid KHELFAOUl1

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.3, pp. 102-110, 2016, DOI:10.3970/fdmp.2016.012.102

    Abstract Microfluidic systems are used and exploited in various fields, as they are highly specific and developed in their use. The micro devices are used in various analyzes of medical disciplines, chemical and other fields. Our research team "MAAt" within ENERGARID laboratory is in the process of triggered several lines of research in this area, the micro-mixing, separation of micro particles, droplet production. For that, we need tools and micro devices to study the phenomena.. In this work, we present a theoretical study and numerical simulation of micro device (micro diode Tesla). A Diode Tesla is More >

  • Open Access

    ARTICLE

    Numerical Investigations of an Integrated Phase-Change-Material Solar Collector

    Z. Bouhssine1, M. Faraji1, M. Najam1, M. El Alami1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.1, pp. 63-85, 2015, DOI:10.3970/fdmp.2015.011.063

    Abstract The objective of this study is to optimize the thermal performance of a solar collector. The solar collector is coupled to a building slab with a PCM layer. A mathematical model for the thermal behavior of the studied system is developed using the enthalpy method. The model parameters are defined and the resulting equations are solved iteratively. Several simulations were carried out to optimize the proposed heating system. The results show that the inlet temperature fluctuations are less pronounced than those at the outlet. More >

Displaying 81-90 on page 9 of 93. Per Page