Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (75)
  • Open Access

    ARTICLE

    Experimental and Numerical Investigation on High-Pressure Centrifugal Pumps: Ultimate Pressure Formulation, Fatigue Life Assessment and Topological Optimization of Discharge Section

    Abdourahamane Salifou Adam1, Hatem Mrad1, Haykel Marouani2,*, Yasser Fouad3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2845-2865, 2023, DOI:10.32604/cmes.2023.030777

    Abstract A high percentage of failure in pump elements originates from fatigue. This study focuses on the discharge section behavior, made of ductile iron, under dynamic load. An experimental protocol is established to collect the strain under pressurization and depressurization tests at specific locations. These experimental results are used to formulate the ultimate pressure expression function of the strain and the lateral surface of the discharge section and to validate finite element modeling. Fe-Safe is then used to assess the fatigue life cycle using different types of fatigue criteria (Coffin-Manson, Morrow, Goodman, and Soderberg). When the pressure is under 3000 PSI,… More >

  • Open Access

    ARTICLE

    3D NUMERICAL INVESTIGATION ON LAMINAR FORCED CONVECTION AND HEAT TRANSFER IN A CIRCULAR TUBE INSERTED WITH RIGHT TRIANGULAR WAVY SURFACES

    Withada Jedsadaratanachaia, Amnart Boonloib,*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.35

    Abstract Numerical investigations on flow and heat transfer characteristics in a circular tube heat exchanger inserted with right triangular wavy surfaces are reported. The configurations of the wavy surfaces; incline and V-shape, are studied with flow attack angles of 30o, 45o and 60o for the Reynolds numbers, Re = 100 – 2000. The numerical results are compared with the smooth circular tube. The mechanisms on flow and heat transfer in the tube heat exchanger with the wavy surface are presented. As the results, the wavy surface can generate the vortex flow and impinging flow through the test section that helps to… More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Multiphase Flow Originating from the Muzzle of Submerged Parallel Guns

    Dongxiao Zhang1, Lin Lu1,*, Xiaobin Qi2,3, Xuepu Yan1, Cisong Gao1, Yanxiao Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2707-2728, 2023, DOI:10.32604/fdmp.2023.028641

    Abstract A two-dimensional model, employing a dynamic mesh technology, is used to simulate numerically the transient multiphase flow field produced by two submerged parallel guns. After a grid refinement study ensuring grid independence, five different conditions are considered to assess the evolution of cavitation occurring in proximity to the gun muzzle. The simulation results show that flow interference is enabled when the distance between the parallel barrels is relatively small; accordingly, the generation and evolution of the vapor cavity becomes more complex. By means of the Q criterion for vorticity detection, it is shown that cavitation causes the generation of vorticity… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION AND ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A MICROCHANNEL USING NANOFLUIDS BY THE LATTICE BOLTZMANN METHOD

    Rahouadja Zarita*, Madjid Hachemi

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-12, 2019, DOI:10.5098/hmt.12.5

    Abstract In this work, heat transfer enhancement in a microchannel using water-Ag nanofluid has been investigated numerically by the lattice Boltzmann method (LBM) by adopting the stream and collide algorithm, with the (BGK) approximation. The base fluid and the suspended nanoparticles are considered as a homogeneous mixture. And single phase model with first order slip and jump boundary conditions has been adopted. Thermophysical properties of water-Ag nanofluid are estimated by the theoretical models. Effects of change in nanoparticle volume fractions, Reynolds number and Knudsen number are considered. It was concluded that change in nanoparticle volume fractions did not have significant effects… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER IN A PARALLELOGRAMIC ENCLOSURE HAVING AN INNER CIRCULAR CYLINDER USING LIQUID NANOFLUID

    Hasan Sh. Majdia , Ammar Abdulkadhimb,* , Azher M. Abedb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-14, 2019, DOI:10.5098/hmt.12.2

    Abstract Fluid flow and natural convection heat transfer in a parallelogram enclosure with an inner circular cylinder using Cu-water nanofluid are studied numerically. Dimensionless Navier-Stokes and energy equations are solved numerically using finite element method based two-dimensional flow and steady-state conditions. This study evaluates the effect of different concentrations of Cu-water nanofluids (0% to 6%) with different Rayleigh numbers 103 ≤ Ra ≤ 106 under isotherm wall temperatures. The effects of geometrical parameters of the parallelogram enclosure (inclination angle in range of 0 ≤ α ≤ 30 and location of inner circular cylinder -0.2 ≤ H ≤ +0.2 on the flow… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATIONS ON FLOW STRUCTURE AND HEAT TRANSFER IN A SQUARE DUCT EQUIPPED WITH DOUBLE VORIFICE

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-11, 2020, DOI:10.5098/hmt.14.27

    Abstract Numerical predictions on heat transfer characteristic, flow topology and thermal performance assessment in a square duct are presented. The passive technique, insertion of the vortex generator, is opted to develop the heat transfer rate in the square duct heat exchanger. The vortex generator of the present research is Double V-Orifice (DVO). The square duct equipped with DVO is tested with various parameters. The influences of DVO height, b, to the duct height, H, or b/H, gap spacing between the outer edge of the orifice and the duct wall, s, to the duct height or s/H and flow directions (tip-pointing-Downstream and… More >

  • Open Access

    ARTICLE

    LAMINAR FORCED CONVECTION AND PERFORMANCE EVALUATION IN A SQUARE DUCT HEAT EXCHANGER PLACED WITH WAVY THIN RIB

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-15, 2020, DOI:10.5098/hmt.15.13

    Abstract Simulated examinations on convective heat transfer and flow topology in a square duct heat exchanger placed with wavy thin rib (WTR) are presented. The influences of WTR heights, pitch distances and flow directions on flow and heat transfer characteristics are investigated for the laminar flow regime at the inlet condition (Re = 100 – 2000). The finite volume method (SIMPLE algorithm) is picked to analyze the numerical problem. The numerical validations; grid independence and verification of the smooth duct, are presented. The simulated results of the heat exchanger duct placed with WTR are reported in terms of flow and heat… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF A CASCADED LATENT HEAT THERMAL ENERGY STORAGE

    Pengda Li, Chao Xu, Zhirong Liao* , Xing Ju, Feng Ye

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-10, 2020, DOI:10.5098/hmt.15.10

    Abstract This study numerically investigates the charging and discharging processes of a three-stages cascaded latent heat thermal energy storage unit using three molten salts as the phase change materials (PCMs). Each stage of the unit is a vertical shell-and-tube heat exchanger, whose shell side is filled with the PCM and air. The liquid fractions, temperatures, and accumulated thermal energy of the PCMs during the fully charging and discharging processes, as well as the effects of the HTF inlet temperature, are analyzed. The results show that lower melting temperature of the PCM causes faster charging rate and more released heat in the… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NUSSELT NUMBER FOR NANOFLUIDS FLOW IN AN INCLINED CYLINDER

    Kafel Azeez Mohammeda,*, Ahmed Mustaffa Saleemb , Zain alabdeen H. Obaida

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-8, 2021, DOI:10.5098/hmt.16.20

    Abstract Numerical investigation is performed for the determination of Nusselt number of ZnO, TiO2 and SiO2 nanoparticles dispersed in 60% ethylene glycol and 40% water inside inclined cylinder for adiabatic and isothermal process. The present study was conducted for both the constant heat flux (10,000 W/m2) and constant wall temperature (313.15 K) boundary conditions. At the inlet, the uniform axial velocity and initial temperature (293 K) were assumed. The results show the change of average Nusselt number at Reynolds number (400), Rayleigh number (106) and volume fraction percentage (2%). From results for adiabatic process when increasing the slop up to (45o),… More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ASSESSMENT IN A CIRCULAR TUBE FITTED WITH VARIOUS SIZES OF MODIFIED V-BAFFLES: A NUMERICAL INVESTIGATION

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-16, 2021, DOI:10.5098/hmt.16.17

    Abstract This research reports numerical examinations on fluid flow, heat transfer behavior and thermal performance analysis in a circular tube equipped with modified V-baffles (CTMVB). The modified V-baffle (MVB) is a combination vortex generator between V-baffles/V-orifices which are placed on the tube wall and V-baffles which are inserted at the core of the tested tube. The MVB height is separated into two parts; b1 represents the MVB height on the tube wall, while b2 represents the MVB height at the core of the tested round tube. The MVB height to tube diameter ratios, b/D, are adjusted; b1/D = 0.05, 0.1, 0.15… More >

Displaying 1-10 on page 1 of 75. Per Page