Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (91)
  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER IN A PARALLELOGRAMIC ENCLOSURE HAVING AN INNER CIRCULAR CYLINDER USING LIQUID NANOFLUID

    Hasan Sh. Majdia , Ammar Abdulkadhimb,* , Azher M. Abedb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-14, 2019, DOI:10.5098/hmt.12.2

    Abstract Fluid flow and natural convection heat transfer in a parallelogram enclosure with an inner circular cylinder using Cu-water nanofluid are studied numerically. Dimensionless Navier-Stokes and energy equations are solved numerically using finite element method based two-dimensional flow and steady-state conditions. This study evaluates the effect of different concentrations of Cu-water nanofluids (0% to 6%) with different Rayleigh numbers 103 ≤ Ra ≤ 106 under isotherm wall temperatures. The effects of geometrical parameters of the parallelogram enclosure (inclination angle in range of 0 ≤ α ≤ 30 and location of inner circular cylinder -0.2 ≤ H ≤… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATIONS ON FLOW STRUCTURE AND HEAT TRANSFER IN A SQUARE DUCT EQUIPPED WITH DOUBLE VORIFICE

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-11, 2020, DOI:10.5098/hmt.14.27

    Abstract Numerical predictions on heat transfer characteristic, flow topology and thermal performance assessment in a square duct are presented. The passive technique, insertion of the vortex generator, is opted to develop the heat transfer rate in the square duct heat exchanger. The vortex generator of the present research is Double V-Orifice (DVO). The square duct equipped with DVO is tested with various parameters. The influences of DVO height, b, to the duct height, H, or b/H, gap spacing between the outer edge of the orifice and the duct wall, s, to the duct height or s/H… More >

  • Open Access

    ARTICLE

    LAMINAR FORCED CONVECTION AND PERFORMANCE EVALUATION IN A SQUARE DUCT HEAT EXCHANGER PLACED WITH WAVY THIN RIB

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-15, 2020, DOI:10.5098/hmt.15.13

    Abstract Simulated examinations on convective heat transfer and flow topology in a square duct heat exchanger placed with wavy thin rib (WTR) are presented. The influences of WTR heights, pitch distances and flow directions on flow and heat transfer characteristics are investigated for the laminar flow regime at the inlet condition (Re = 100 – 2000). The finite volume method (SIMPLE algorithm) is picked to analyze the numerical problem. The numerical validations; grid independence and verification of the smooth duct, are presented. The simulated results of the heat exchanger duct placed with WTR are reported in More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF A CASCADED LATENT HEAT THERMAL ENERGY STORAGE

    Pengda Li, Chao Xu, Zhirong Liao* , Xing Ju, Feng Ye

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-10, 2020, DOI:10.5098/hmt.15.10

    Abstract This study numerically investigates the charging and discharging processes of a three-stages cascaded latent heat thermal energy storage unit using three molten salts as the phase change materials (PCMs). Each stage of the unit is a vertical shell-and-tube heat exchanger, whose shell side is filled with the PCM and air. The liquid fractions, temperatures, and accumulated thermal energy of the PCMs during the fully charging and discharging processes, as well as the effects of the HTF inlet temperature, are analyzed. The results show that lower melting temperature of the PCM causes faster charging rate and More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NUSSELT NUMBER FOR NANOFLUIDS FLOW IN AN INCLINED CYLINDER

    Kafel Azeez Mohammeda,*, Ahmed Mustaffa Saleemb , Zain alabdeen H. Obaida

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-8, 2021, DOI:10.5098/hmt.16.20

    Abstract Numerical investigation is performed for the determination of Nusselt number of ZnO, TiO2 and SiO2 nanoparticles dispersed in 60% ethylene glycol and 40% water inside inclined cylinder for adiabatic and isothermal process. The present study was conducted for both the constant heat flux (10,000 W/m2) and constant wall temperature (313.15 K) boundary conditions. At the inlet, the uniform axial velocity and initial temperature (293 K) were assumed. The results show the change of average Nusselt number at Reynolds number (400), Rayleigh number (106) and volume fraction percentage (2%). From results for adiabatic process when increasing the slop More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ASSESSMENT IN A CIRCULAR TUBE FITTED WITH VARIOUS SIZES OF MODIFIED V-BAFFLES: A NUMERICAL INVESTIGATION

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-16, 2021, DOI:10.5098/hmt.16.17

    Abstract This research reports numerical examinations on fluid flow, heat transfer behavior and thermal performance analysis in a circular tube equipped with modified V-baffles (CTMVB). The modified V-baffle (MVB) is a combination vortex generator between V-baffles/V-orifices which are placed on the tube wall and V-baffles which are inserted at the core of the tested tube. The MVB height is separated into two parts; b1 represents the MVB height on the tube wall, while b2 represents the MVB height at the core of the tested round tube. The MVB height to tube diameter ratios, b/D, are adjusted; b1/D… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF FLOW AND HEAT TRANSFER IN CORRUGATED PARALLEL CHANNEL WITH SINUSOIDAL WAVE SURFACE

    Jingquan Zhanga,b, Kun Zhanga,b,*

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-6, 2021, DOI:10.5098/hmt.17.14

    Abstract Detailed numerical analysis is presented for flow and heat transfer in sinusoidal-corrugated parallel channel with six discrete heat sources placed under the bottom surface. Three dimensional numerical model are applied for simulating the flow and heat transfer process and the Colburn j factor is applied to evaluate the overall performance of the corrugated liquid cooled channel. The results show that the maximum temperature in the middle section decreases and the pressure loss increases as the wavelength of sinusoidal surface on the bottom decreases, while the increasing wave amplitude of corrugated surface can enhance the heat More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION FOR THE LAMINAR FLOW EFFECTS OVER ROUGH SURFACE USING DIRECTION SPLITTING

    Mei Sua , Ligai Kangb, Kangjie Sunb,*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-5, 2022, DOI:10.5098/hmt.18.22

    Abstract To study the heat transfer effect of rough surface in laminar flow, the direction splitting method is introduced by fully developed fields for solving the Navier–Stokes equations of incompressible flow in assuming two-dimension. Firstly, the algorithm of the incompressible Navier–Stokes equations with pressure correct is carried out. Secondly, the effects of pressure drop and heat transfer are investigated in different rough surface elements which are configured with triangular and rectangular elements. The Reynolds number, roughness element spacing, and roughness height are also considered as the factors which affect the heat transfer. The results indicate that More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER OF HUMID-AIR INSIDE AN OPEN CAVITY: PARAMETRIC STUDY

    Tounsi Chatia,* , Kouider Rahmanib, Toufik Tayeb Naasc, Abdelkader Rouibahb

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-11, 2022, DOI:10.5098/hmt.18.19

    Abstract Numerical results of turbulent natural convection and mass transfer in an open enclosure for different aspect ratios (AR = 0.5, 1, and 2) with a humidair are carried out. Mass fraction and local Nusselt number were proposed to investigate the heat and mass transfer. A heat flux boundary conditions were subjected to the lateral walls and the bottom one make as an adiabatic wall, while the top area was proposed as a free surface. Effect of Rayleigh numbers (106More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF COUPLED NATURAL CONVECTION AND SURFACE RADIATION IN A SQUARE CAVITY WITH THE LINEARLY HEATED SIDE WALL(S)

    Ravi Shankar Prasada,*, S.N. Singhb, Amit Kumar Guptac

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-11, 2022, DOI:10.5098/hmt.19.16

    Abstract The results of numerical analysis of coupled laminar natural convection and surface radiation in a two-dimensional closed square cavity with the uniformly heated bottom wall, linearly heated vertical side wall(s) and the adiabatic top wall is discussed. The cavity is filled with natural air (Pr = 0.70) as the fluid medium. In the present study, the governing equations i.e., the Navier-Stokes Equation in the stream function – vorticity form and the Energy Equation are solved for a constant property fluid under the Boussinesq approximation. For discretization of these equations, the finite volume technique is used. More >

Displaying 21-30 on page 3 of 91. Per Page