Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ARTICLE

    Numerical Investigation of the Temperature and Flow Fields in a Solar Chimney Power Plant

    Roudouane Laouar1,*, Olaf Wünsch2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1055-1066, 2023, DOI:10.32604/fdmp.2022.022677 - 02 November 2022

    Abstract In this work, a parametric two-dimensional computational fluid dynamics (CFD) analysis of a solar chimney power plant (a prototype located in Manzanares, Spain) is presented to illustrate the effects of the solar radiation mode in the collector on the plant performances. The simulations rely on a mathematical model that includes solar radiation within the collector; energy storage; air flow and heat transfer, and a turbine. It is based on the Navier-Stokes equation for turbulent flow formulated according to the standard k-ε model. Moreover, the Boussinesq approach is used to account for the fluid density variations. More >

  • Open Access

    ARTICLE

    Numerical Investigation of Malaria Disease Dynamics in Fuzzy Environment

    Fazal Dayan1,*, Dumitru Baleanu2,3,4, Nauman Ahmed5, Jan Awrejcewicz6, Muhammad Rafiq7, Ali Raza8, Muhammad Ozair Ahmad5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2345-2361, 2023, DOI:10.32604/cmc.2023.033261 - 31 October 2022

    Abstract The application of fuzzy theory is vital in all scientific disciplines. The construction of mathematical models with fuzziness is little studied in the literature. With this in mind and for a better understanding of the disease, an SEIR model of malaria transmission with fuzziness is examined in this study by extending a classical model of malaria transmission. The parameters and , being function of the malaria virus load, are considered fuzzy numbers. Three steady states and the reproduction number of the model are analyzed in fuzzy senses. A numerical technique is developed in a fuzzy More >

  • Open Access

    ARTICLE

    A Study of Traveling Wave Structures and Numerical Investigation of Two-Dimensional Riemann Problems with Their Stability and Accuracy

    Abdulghani Ragaa Alharbi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2193-2209, 2023, DOI:10.32604/cmes.2022.018445 - 20 September 2022

    Abstract The Riemann wave system has a fundamental role in describing waves in various nonlinear natural phenomena, for instance, tsunamis in the oceans. This paper focuses on executing the generalized exponential rational function approach and some numerical methods to obtain a distinct range of traveling wave structures and numerical results of the two-dimensional Riemann problems. The stability of obtained traveling wave solutions is analyzed by satisfying the constraint conditions of the Hamiltonian system. Numerical simulations are investigated via the finite difference method to verify the accuracy of the obtained results. To extract the approximation solutions to More >

  • Open Access

    ARTICLE

    A Numerical Investigation on the Influence of the Circular Ring on the Aerodynamic Noise Generated by a Cooling Fan

    Jun Feng1,2, Tao Bian1,2,5, Qianpeng Han2, Bing Wang1,3,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 1-14, 2023, DOI:10.32604/fdmp.2023.018275 - 02 August 2022

    Abstract The influence of the width of the circular ring of a car cooling fan on the aerodynamic noise is investigated numerically through the determination of the overall sound pressure level (OASPL). The results demonstrate that when the circular rings cover near 2/3 of the width of the blade tips of the rotor in the axis direction, the rotor has the lowest OASPL and the related total pressure efficiency and flow mass rate are better than the corresponding values obtained for a reference rotor without a circular ring. With increasing the width of the circular ring More > Graphic Abstract

    A Numerical Investigation on the Influence of the Circular Ring on the Aerodynamic Noise Generated by a Cooling Fan

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION FOR THE LAMINAR FLOW EFFECTS OVER ROUGH SURFACE USING DIRECTION SPLITTING

    Mei Sua , Ligai Kangb, Kangjie Sunb,*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-5, 2022, DOI:10.5098/hmt.18.22

    Abstract To study the heat transfer effect of rough surface in laminar flow, the direction splitting method is introduced by fully developed fields for solving the Navier–Stokes equations of incompressible flow in assuming two-dimension. Firstly, the algorithm of the incompressible Navier–Stokes equations with pressure correct is carried out. Secondly, the effects of pressure drop and heat transfer are investigated in different rough surface elements which are configured with triangular and rectangular elements. The Reynolds number, roughness element spacing, and roughness height are also considered as the factors which affect the heat transfer. The results indicate that More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER OF HUMID-AIR INSIDE AN OPEN CAVITY: PARAMETRIC STUDY

    Tounsi Chatia,* , Kouider Rahmanib, Toufik Tayeb Naasc, Abdelkader Rouibahb

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-11, 2022, DOI:10.5098/hmt.18.19

    Abstract Numerical results of turbulent natural convection and mass transfer in an open enclosure for different aspect ratios (AR = 0.5, 1, and 2) with a humidair are carried out. Mass fraction and local Nusselt number were proposed to investigate the heat and mass transfer. A heat flux boundary conditions were subjected to the lateral walls and the bottom one make as an adiabatic wall, while the top area was proposed as a free surface. Effect of Rayleigh numbers (106More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF COUPLED NATURAL CONVECTION AND SURFACE RADIATION IN A SQUARE CAVITY WITH THE LINEARLY HEATED SIDE WALL(S)

    Ravi Shankar Prasada,*, S.N. Singhb, Amit Kumar Guptac

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-11, 2022, DOI:10.5098/hmt.19.16

    Abstract The results of numerical analysis of coupled laminar natural convection and surface radiation in a two-dimensional closed square cavity with the uniformly heated bottom wall, linearly heated vertical side wall(s) and the adiabatic top wall is discussed. The cavity is filled with natural air (Pr = 0.70) as the fluid medium. In the present study, the governing equations i.e., the Navier-Stokes Equation in the stream function – vorticity form and the Energy Equation are solved for a constant property fluid under the Boussinesq approximation. For discretization of these equations, the finite volume technique is used. More >

  • Open Access

    ARTICLE

    Numerical Investigation on Vibration Performance of Flexible Plates Actuated by Pneumatic Artificial Muscle

    Zhimin Zhao1,2, Jie Yan3, Shangbin Wang1,2, Yuanhao Tie4, Ning Feng1,2,5,*

    Sound & Vibration, Vol.56, No.4, pp. 307-317, 2022, DOI:10.32604/sv.2022.028797 - 03 March 2023

    Abstract This paper theoretically introduced the feasibility of changing the vibration characteristics of flexible plates by using bio-inspired, extremely light, and powerful Pneumatic Artificial Muscle (PAM) actuators. Many structural plates or shells are typically flexible and show high vibration sensitivity. For this reason, this paper provides a way to achieve active vibration control for suppressing the oscillations of these structures to meet strict stability, safety, and comfort requirements. The dynamic behaviors of the designed plates are modeled by using the finite element (FE) method. As is known, the output force vs. contraction curve of PAM is nonlinear… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Buoyancy Ratio and Dufour Parameter on Thermosolutal Convection in a Square Salt Gradient Solar Pond

    Yassmine Rghif1,*, Belkacem Zeghmati2, Fatima Bahraoui1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1319-1329, 2022, DOI:10.32604/fdmp.2022.021500 - 27 May 2022

    Abstract This work aims to investigate numerically the influence of the buoyancy ratio and the Dufour parameter on thermosolutal convection in a square Salt Gradient Solar Pond (SGSP). The absorption of solar radiation by the saline water, the heat losses and the wind effects via the SGSP free surface are considered. The mathematical model is based on the Navier-Stokes equations used in synergy with the thermal energy equation. These equations are solved using the finite volume method and the Gauss algorithm. Velocity-pressure coupling is implemented through the SIMPLE algorithm. Simulations of the SGSP are performed for… More >

  • Open Access

    ARTICLE

    Numerical Investigation into the Transient Behavior of the Spike-Type Rotating Stall for a Transonic Compressor Rotor

    Pengfei Ju1,2, Fangfei Ning3,4,*, Zhiting Tong1,2, Jingying Wang5,6

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 761-773, 2022, DOI:10.32604/fdmp.2022.018841 - 22 February 2022

    Abstract In this paper, a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor (the NASA Rotor 37). Through solution of the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations, the evolution process from an initially circumferentially-symmetric near-stall flow field to a stable stall condition is simulated without adding any artificial disturbance. At the near-stall operating point, periodic fluctuations are present in the overall flow of the rotor. Moreover, the blockage region in the channel periodically shifts from middle span to the tip. This fluctuating condition does not directly lead to stall, More >

Displaying 21-30 on page 3 of 98. Per Page