Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    Multi-Phase Modeling for Vulnerability Detection & Patch Management: An Analysis Using Numerical Methods

    Adarsh Anand1, Divya1, Deepti Aggrawal2, Omar H. Alhazmi3,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1529-1544, 2025, DOI:10.32604/cmc.2025.063361 - 09 June 2025

    Abstract Software systems are vulnerable to security breaches as they expand in complexity and functionality. The confidentiality, integrity, and availability of data are gravely threatened by flaws in a system’s design, implementation, or configuration. To guarantee the durability & robustness of the software, vulnerability identification and fixation have become crucial areas of focus for developers, cybersecurity experts and industries. This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection. To uniquely model these processes, the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning… More >

  • Open Access

    REVIEW

    A Review of the Numerical Methods for Diblock Copolymer Melts

    Youngjin Hwang, Seungyoon Kang, Junseok Kim*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1811-1838, 2025, DOI:10.32604/cmc.2025.061071 - 17 February 2025

    Abstract This review paper provides a comprehensive introduction to various numerical methods for the phase-field model used to simulate the phase separation dynamics of diblock copolymer melts. Diblock copolymer systems form complex structures at the nanometer scale and play a significant role in various applications. The phase-field model, in particular, is essential for describing the formation and evolution of these structures and is widely used as a tool to effectively predict the movement of phase boundaries and the distribution of phases over time. In this paper, we discuss the principles and implementations of various numerical methodologies More >

  • Open Access

    PROCEEDINGS

    Dynamics of Bubble-Particle Interaction at Different Distances Under Ultrasonic Excitation

    Jie Wang1,*, Jingyu Gu1, Shuai Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012184

    Abstract The interaction between the particle and the bubble under the ultrasonic wave excitation plays a pivotal role in various applications such as targeted therapy, ultrasonic cleaning, ultrasonography, and microbubble motors. When the particle is in close proximity or even attached to the bubble, a strong fluid-structure interaction occurs, significantly influencing the particle propulsion. The attachment of the bubble to the particle results in distinct bubble pulsation patterns and particle acceleration mechanisms from the non-contact state. Thus, we propose a fluid-structure interaction model based on the boundary integral method (BIM) to comprehensively consider the distance between More >

  • Open Access

    ARTICLE

    Numerical Predictions of Laminar Forced Convection Heat Transfer with and without Buoyancy Effects from an Isothermal Horizontal Flat Plate to Supercritical Nitrogen

    K. S. Rajendra Prasad1, Sathya Sai2, T. R. Seetharam3, Adithya Garimella1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 889-917, 2024, DOI:10.32604/fhmt.2024.047703 - 11 July 2024

    Abstract Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards. Computations are performed by varying the value of from 5 to 30 K and ratio from 1.1 to 1.5. Variation of all the thermophysical properties of supercritical Nitrogen is considered. The wall temperatures are chosen in such a way that two values of T are less than is the temperature at which the fluid has a maximum value of C for the given pressure), More >

  • Open Access

    ARTICLE

    A Novel Numerical Method for Simulating Boiling Heat Transfer of Nanofluids

    Yang Cao*, Xuhui Meng

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 583-595, 2024, DOI:10.32604/fhmt.2024.049111 - 20 May 2024

    Abstract In this paper, a new approach called the Eulerian species method was proposed for simulating the convective and/or boiling heat transfer of nanofluids. The movement of nanoparticles in nanofluids is tracked by the species transport equation, and the boiling process of nanofluids is computed by the Eulerian multiphase method coupled with the RPI boiling model. The validity of the species transport equation for simulating nanoparticles movement was verified by conducting a simulation of nanofluids convective heat transfer. Simulation results of boiling heat transfer of nanofluids were obtained by using the commercial CFD software ANSYS Fluent More >

  • Open Access

    ARTICLE

    Analytical and Numerical Methods to Study the MFPT and SR of a Stochastic Tumor-Immune Model

    Ying Zhang1, Wei Li1,*, Guidong Yang1, Snezana Kirin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2177-2199, 2024, DOI:10.32604/cmes.2023.030728 - 15 December 2023

    Abstract The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model with noise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian white noise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. As follows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPT is obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrence of the tumor from the extinction state to the tumor-present state is more concerned in this paper. A more… More >

  • Open Access

    ARTICLE

    A Calculation Method of Double Strength Reduction for Layered Slope Based on the Reduction of Water Content Intensity

    Feng Shen1,*, Yang Zhao1, Bingyi Li1, Kai Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 221-243, 2024, DOI:10.32604/cmes.2023.029159 - 22 September 2023

    Abstract The calculation of the factor of safety (FOS) is an important means of slope evaluation. This paper proposed an improved double strength reduction method (DRM) to analyze the safety of layered slopes. The physical properties of different soil layers of the slopes are different, so the single coefficient strength reduction method (SRM) is not enough to reflect the actual critical state of the slopes. Considering that the water content of the soil in the natural state is the main factor for the strength of the soil, the attenuation law of shear strength of clayey soil… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Multiphase Flow in Subsurface Reservoirs: Existing Challenges and New Treatments

    Shuyu Sun1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09671

    Abstract Two or multiple phases commonly occur as fluid mixture in petroleum industry, where oil, gas and water are often produced and transported together. As a result, petroleum reservoir engineers spent great efforts in the development and production of oil and gas reservoirs by conducting and interpolating the simulation of multiphase flows in porous geological formation. Meanwhile, environmental scientists use subsurface flow and transport models to investigate and compare for example various schemes to inject and store CO2 in subsurface geological formations, such as depleted reservoirs and deep saline aquifers. In this work, we first present… More >

  • Open Access

    PROCEEDINGS

    Experimental and Numerical Methods for Characterizing Thermal Gradient Induced Stress in Elevated Temperature Fatigue Testing

    Guo Li1, Shaochen Bao2, Shuiting Ding3, Zhenlei Li2,*, Liangliang Zuo1, Shuyang Xia1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09927

    Abstract Advanced air-cooling turbine blades are capable of operating above the melting temperature of Nickel-based superalloy, which accordingly withstand complex thermomechanical fatigue loads during service life. This paper considers the problem of realizing gas turbine representative thermal gradients in the elevated temperature fatigue test, while ensuring the thermal gradient induced stress inside the specimens. For this purpose, a novel temperature control device utilizing impingement cooling, which supplies cooling air inside the gauge section and releases toward the inner wall, was constructed in tubular fatigue specimens. A single induction coil was arranged outside the gauge section, providing… More >

  • Open Access

    PROCEEDINGS

    A Numerical Method of Granular Flow for Hazard Prediction Based on Depth-Integrated Model and High-Resolution Algorithm

    Wangxin Yu1,*, XiaoLiang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09825

    Abstract Landslide, debris flow and other large-scale natural disasters have a great threat to human life and property safety. The accuracy of prediction and calculation of large-scale disasters still needs great improvement, so as the study of prevention and interaction. In this paper, the depth-integrated shallow water flow model is adopted, and the numerical method of Kurganov developed in recent years is used to develop a highresolution algorithm which can capture shock waves and satisfy the hydrodynamic conditions. In order to make it adapt to the granular flow, appropriate adjustment is made distinct from the original… More >

Displaying 1-10 on page 1 of 64. Per Page