Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (450)
  • Open Access

    ARTICLE

    Axisymmetric and 3-D Numerical Simulations of the Effects of a Static Magnetic Field on Dissolution of Silicon into Germanium

    F. Mechighel1,2,3, N. Armour4, S. Dost4, M. Kadja3

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 53-80, 2014, DOI:10.3970/cmes.2014.097.053

    Abstract Numerical simulations were carried out to explain the behavior exhibited in experimental work on the dissolution process of silicon into a germanium melt. The experimental work utilized a material configuration similar to that used in the Liquid Phase Diffusion (LPD) and Melt-Replenishment Czochralski (Cz) growth systems. The experimental dissolution system was modeled by considering axisymmetric and three-dimensional (3-D) domains. In both cases, the governing equations, namely conservation of mass, momentum balance, energy balance, and solute transport balance, were solved using the Finite Element Method.
    Measured concentration profiles and dissolution heights from the experiment samples showed that… More >

  • Open Access

    ARTICLE

    An Approach with HaarWavelet Collocation Method for Numerical Simulations of Modified KdV and Modified Burgers Equations

    S. Saha Ray1, A. K. Gupta2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.5, pp. 315-341, 2014, DOI:10.3970/cmes.2014.103.315

    Abstract In this paper, an efficient numerical schemes based on the Haar wavelet method are applied for finding numerical solution of nonlinear third-order modified Korteweg-de Vries (mKdV) equation as well as modified Burgers' equations. The numerical results are then compared with the exact solutions. The accuracy of the obtained solutions is quite high even if the number of calculation points is small. More >

  • Open Access

    ARTICLE

    Numerical Simulation of 3D Rough Surfaces and Analysis of Interfacial Contact Characteristics

    Guoqing Yang1, Baotong Li2,3, Yang Wang2, Jun Hong2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.4, pp. 251-279, 2014, DOI:10.3970/cmes.2014.103.251

    Abstract Mechanical behaviors arising at the contact interface largely depend on its surface topographies, particularly when it comes to rough surfaces. A numerical simulation based on an appropriate characterization of rough surfaces especially in terms of three dimensional can be of great significance when it comes to capturing the deformation patterns of micro-scale contacts. In this paper, a simple and practical scheme is developed to generate 3D rough surfaces and to analyze and evaluate the contact characteristics. Firstly amplitude and spatial statistical characterizations of asperities are introduced to avert from the redundancy of topography data caused… More >

  • Open Access

    ARTICLE

    Numerical Study of Combined Natural Convection-surface Radiation in a Square Cavity

    S. Hamimid1,2, M. Guellal1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 377-393, 2014, DOI:10.3970/fdmp.2014.010.377

    Abstract Combined laminar natural convection and surface radiation in a differentially heated square cavity has been investigated by a finite volume method through the concepts of staggered grid and SIMPLER approach. A power scheme has been also used in approximating advection–diffusion terms, determining the view factors by means of analytical expressions. The effect of emissivity on temperature and velocity profiles within the enclosure has been analyzed. In addition, results for local and average convective and radiative Nusselt numbers are presented and discussed for various conditions. More >

  • Open Access

    ARTICLE

    DETERMINING HEAT TRANSFER COEFFICIENT OF HUMAN BODY

    A. Najjaran*, Ak. Najjaran, A. Fotoohabadi, A.R. Shiri

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-5, 2013, DOI:10.5098/hmt.v4.1.3003

    Abstract In this paper, the aim is obtaining convection coefficient of human body. This field of study is essential in study of ventilation systems, astronauts’ clothes and any other fields in which human body is the main concern. At first a 3D human body has been designed by unstructured grids. Feet and hands are stretched completely in considered sample. Two postures (standing and supine) are considered for body. Soles and the back of entire body are considered in contact with the ground respectively in these postures. Other parts of human body are exposed to surrounding air. More >

  • Open Access

    ARTICLE

    2D and 3D Multiphysics Voronoi Cells, Based on Radial Basis Functions, for Direct Mesoscale Numerical Simulation (DMNS) of the Switching Phenomena in Ferroelectric Polycrystalline Materials

    Peter L. Bishay1, Satya N. Atluri1

    CMC-Computers, Materials & Continua, Vol.33, No.1, pp. 19-62, 2013, DOI:10.3970/cmc.2013.033.019

    Abstract In this paper, 2D and 3D Multiphysics Voronoi Cells (MVCs) are developed, for the Direct Mesoscale Numerical Simulation (DMNS) of the switching phenomena in ferroelectric polycrystalline materials. These arbitrarily shaped MVCs (arbitrary polygons in 2D, and arbitrary polyhedrons in 3D with each face being an arbitrary polygon) are developed, based on assuming radial basis functions to represent the internal primal variables (mechanical displacements and electric potential), and assuming linear functions to represent the primal variables on the element boundaries. For the 3D case, the linear functions used to represent the primal variables on each of… More >

  • Open Access

    ARTICLE

    Cell Migration and Cell-Cell Interaction in the Presence of Mechano-Chemo-Thermotaxis

    S.J. Mousavi, M.H. Doweidar∗,†, M. Doblaré

    Molecular & Cellular Biomechanics, Vol.10, No.1, pp. 1-25, 2013, DOI:10.3970/mcb.2013.010.001

    Abstract Although there are several computational models that explain the trajectory that cells take during migration, till now little attention has been paid to the integration of the cell migration in a multi-signaling system. With that aim, a generalized model of cell migration and cell-cell interaction under multisignal environments is presented herein. In this work we investigate the spatio-temporal cell-cell interaction problem induced by mechano-chemo-thermotactic cues. It is assumed that formation of a new focal adhesion generates traction forces proportional to the stresses transmitted by the cell to the extracellular matrix. The cell velocity and polarization… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Investigations of Jet Impingement on a Periodically Oscillating-Heated Flat Plate

    A. Balabel1,2,3, W. A. El-askary2, S. Wilson2

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 483-499, 2013, DOI:10.3970/cmes.2013.095.483

    Abstract In the present paper, the impingement of air jet on a heated flat plate subjected to a periodic oscillation is numerically and experimentally investigated. The motivation of the present research is the desire to enhance the heat transfer characteristics during the cooling process of a heated flat plate which can be found in many relevance industrial applications. In order to improve the heat transfer characteristics, a novel idea is utilized, where a periodical oscillation movement in form of sine wave produced from a Scotch yoke mechanism is applied to the heated flat plate. The obtained More >

  • Open Access

    ARTICLE

    Numerical Modelling of Liquid Jet Breakup by Different Liquid Jet/Air Flow Orientations Using the Level Set Method

    Ashraf Balabel1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.4, pp. 283-302, 2013, DOI:10.3970/cmes.2013.095.283

    Abstract This paper presents the numerical results obtained from the numerical simulation of turbulent liquid jet atomization due to three distinctly different types of liquid jets/air orientations; namely, coflow jet, coaxial jet and the combined coflow-coaxial jet. The applied numerical method, developed by the present authors, is based on the solution of the Reynolds-Averaged Navier Stokes (RANS) equations for time-dependent, axisymmetric and incompressible two-phase flow in both phases separately and on regular and structured cell-centered collocated grids using the control volume approach. The transition from one phase to another is performed through a consistent balance of… More >

  • Open Access

    ARTICLE

    GDQFEM Numerical Simulations of Continuous Media with Cracks and Discontinuities

    E. Viola1, F. Tornabene1, E. Ferretti1, N. Fantuzzi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.4, pp. 331-369, 2013, DOI:10.3970/cmes.2013.094.331

    Abstract In the present paper the Generalized Differential Quadrature Finite Element Method (GDQFEM) is applied to deal with the static analysis of plane state structures with generic through the thickness material discontinuities and holes of various shapes. The GDQFEM numerical technique is an extension of the Generalized Differential Quadrature (GDQ) method and is based on the idea of conventional integral quadrature. In particular, the GDQFEM results in terms of stresses and displacements for classical and advanced plane stress problems with discontinuities are compared to the ones by the Cell Method (CM) and Finite Element Method (FEM). More >

Displaying 351-360 on page 36 of 450. Per Page