Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight

    Zenglun Guan1,2, Murad S. Alfarzaeai1,3,*, Eryi Hu1,3,*, Taqiaden Alshmeri4, Wang Peng3

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 279-306, 2024, DOI:10.32604/cmc.2024.047159

    Abstract In the coal mining industry, the gangue separation phase imposes a key challenge due to the high visual similarity between coal and gangue. Recently, separation methods have become more intelligent and efficient, using new technologies and applying different features for recognition. One such method exploits the difference in substance density, leading to excellent coal/gangue recognition. Therefore, this study uses density differences to distinguish coal from gangue by performing volume prediction on the samples. Our training samples maintain a record of 3-side images as input, volume, and weight as the ground truth for the classification. The… More >

  • Open Access

    ARTICLE

    EfficientShip: A Hybrid Deep Learning Framework for Ship Detection in the River

    Huafeng Chen1, Junxing Xue2, Hanyun Wen2, Yurong Hu1, Yudong Zhang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 301-320, 2024, DOI:10.32604/cmes.2023.028738

    Abstract Optical image-based ship detection can ensure the safety of ships and promote the orderly management of ships in offshore waters. Current deep learning researches on optical image-based ship detection mainly focus on improving one-stage detectors for real-time ship detection but sacrifices the accuracy of detection. To solve this problem, we present a hybrid ship detection framework which is named EfficientShip in this paper. The core parts of the EfficientShip are DLA-backboned object location (DBOL) and CascadeRCNN-guided object classification (CROC). The DBOL is responsible for finding potential ship objects, and the CROC is used to categorize More >

  • Open Access

    ARTICLE

    Entropy Based Feature Fusion Using Deep Learning for Waste Object Detection and Classification Model

    Ehab Bahaudien Ashary1, Sahar Jambi2, Rehab B. Ashari2, Mahmoud Ragab3,4,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2953-2969, 2023, DOI:10.32604/csse.2023.041523

    Abstract Object Detection is the task of localization and classification of objects in a video or image. In recent times, because of its widespread applications, it has obtained more importance. In the modern world, waste pollution is one significant environmental problem. The prominence of recycling is known very well for both ecological and economic reasons, and the industry needs higher efficiency. Waste object detection utilizing deep learning (DL) involves training a machine-learning method to classify and detect various types of waste in videos or images. This technology is utilized for several purposes recycling and sorting waste,… More >

  • Open Access

    ARTICLE

    Efficient Object Detection and Classification Approach Using HTYOLOV4 and M2RFO-CNN

    V. Arulalan*, Dhananjay Kumar

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1703-1717, 2023, DOI:10.32604/csse.2023.026744

    Abstract Object detection and classification are the trending research topics in the field of computer vision because of their applications like visual surveillance. However, the vision-based objects detection and classification methods still suffer from detecting smaller objects and dense objects in the complex dynamic environment with high accuracy and precision. The present paper proposes a novel enhanced method to detect and classify objects using Hyperbolic Tangent based You Only Look Once V4 with a Modified Manta-Ray Foraging Optimization-based Convolution Neural Network. Initially, in the pre-processing, the video data was converted into image sequences and Polynomial Adaptive… More >

  • Open Access

    ARTICLE

    Deep Reinforcement Learning Enabled Smart City Recycling Waste Object Classification

    Mesfer Al Duhayyim1, Taiseer Abdalla Elfadil Eisa2, Fahd N. Al-Wesabi3,4, Abdelzahir Abdelmaboud5, Manar Ahmed Hamza6,*, Abu Sarwar Zamani6, Mohammed Rizwanullah6, Radwa Marzouk7,8

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5699-5715, 2022, DOI:10.32604/cmc.2022.024431

    Abstract The Smart City concept revolves around gathering real time data from citizen, personal vehicle, public transports, building, and other urban infrastructures like power grid and waste disposal system. The understandings obtained from the data can assist municipal authorities handle assets and services effectually. At the same time, the massive increase in environmental pollution and degradation leads to ecological imbalance is a hot research topic. Besides, the progressive development of smart cities over the globe requires the design of intelligent waste management systems to properly categorize the waste depending upon the nature of biodegradability. Few of… More >

  • Open Access

    ARTICLE

    Research on the Clustering Analysis and Similarity in Factor Space

    Sha-Sha Li1,2,∗, Tie-Jun Cui1,2,3,†, Jian Liu1,2,‡

    Computer Systems Science and Engineering, Vol.33, No.5, pp. 397-404, 2018, DOI:10.32604/csse.2018.33.397

    Abstract In this paper, we study the in uence of multiple domain attributes on the clustering analysis of object based on factor space. The representation method of graphical domain attribute is proposed for the object, which is called attribute circle. An attribute circle can represent infinite domain attributes. The similarity analysis of objects is first based on the concept of attribute circle, and the definition of graphical similarity is transformed into the definition of numerical similarity, and then the clustering analysis method of object set is studied and improved. Considering three kinds of graphical overlap, the… More >

Displaying 1-10 on page 1 of 6. Per Page