Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Application of Various Optimisation Methods in the Multi-Optimisation for Tribological Properties of Al–B4C Composites

    Sandra Gajević1, Slavica Miladinović1, Jelena Jovanović1, Onur Güler2, Serdar Özkaya2, Blaža Stojanović1,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4341-4361, 2025, DOI:10.32604/cmc.2025.065645 - 30 July 2025

    Abstract This paper presents an investigation of the tribological performance of AA2024–B4C composites, with a specific focus on the influence of reinforcement and processing parameters. In this study three input parameters were varied: B4C weight percentage, milling time, and normal load, to evaluate their effects on two output parameters: wear loss and the coefficient of friction. AA2024 alloy was used as the matrix alloy, while B4C particles were used as reinforcement. Due to the high hardness and wear resistance of B4C, the optimized composite shows strong potential for use in aerospace structural elements and automotive brake components. The… More >

  • Open Access

    ARTICLE

    Effects of Normalised SSIM Loss on Super-Resolution Tasks

    Adéla Hamplová*, Tomáš Novák, Miroslav Žáček, Jiří Brožek

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3329-3349, 2025, DOI:10.32604/cmes.2025.066025 - 30 June 2025

    Abstract This study proposes a new component of the composite loss function minimised during training of the Super-Resolution (SR) algorithms—the normalised structural similarity index loss , which has the potential to improve the natural appearance of reconstructed images. Deep learning-based super-resolution (SR) algorithms reconstruct high-resolution images from low-resolution inputs, offering a practical means to enhance image quality without requiring superior imaging hardware, which is particularly important in medical applications where diagnostic accuracy is critical. Although recent SR methods employing convolutional and generative adversarial networks achieve high pixel fidelity, visual artefacts may persist, making the design of… More >

  • Open Access

    REVIEW

    Feature Selection Optimisation for Cancer Classification Based on Evolutionary Algorithms: An Extensive Review

    Siti Ramadhani1,2, Lestari Handayani2, Theam Foo Ng3, Sumayyah Dzulkifly1, Roziana Ariffin4,5, Haldi Budiman6, Shir Li Wang1,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2711-2765, 2025, DOI:10.32604/cmes.2025.062709 - 30 June 2025

    Abstract In recent years, feature selection (FS) optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification. This work reviews FS and classification methods that utilize evolutionary algorithms (EAs) for gene expression profiles in cancer or medical applications based on research motivations, challenges, and recommendations. Relevant studies were retrieved from four major academic databases–IEEE, Scopus, Springer, and ScienceDirect–using the keywords ‘cancer classification’, ‘optimization’, ‘FS’, and ‘gene expression profile’. A total of 67 papers were finally selected with key advancements identified as follows: (1) The majority of papers… More > Graphic Abstract

    Feature Selection Optimisation for Cancer Classification Based on Evolutionary Algorithms: An Extensive Review

  • Open Access

    ARTICLE

    A Genetic Approach to Minimising Gate and Qubit Teleportations for Multi-Processor Quantum Circuit Distribution

    Oliver Crampton1,*, Panagiotis Promponas1,2, Richard Chen1, Paul Polakos1, Leandros Tassiulas2, Louis Samuel1

    Journal of Quantum Computing, Vol.7, pp. 1-15, 2025, DOI:10.32604/jqc.2025.061275 - 21 March 2025

    Abstract Distributed Quantum Computing (DQC) provides a means for scaling available quantum computation by interconnecting multiple quantum processor units (QPUs). A key challenge in this domain is efficiently allocating logical qubits from quantum circuits to the physical qubits within QPUs, a task known to be NP-hard. Traditional approaches, primarily focused on graph partitioning strategies, have sought to reduce the number of required Bell pairs for executing non-local CNOT operations, a form of gate teleportation. However, these methods have limitations in terms of efficiency and scalability. Addressing this, our work jointly considers gate and qubit teleportations introducing… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Next-Gen UAV Swarm Robotics: Optimisation Techniques and Control Strategies for Dynamic Environments

    Ghulam E Mustafa Abro1,*, Ayman M Abdallah1,2, Faizan Zahid3, Saleem Ahmed4

    Intelligent Automation & Soft Computing, Vol.40, pp. 99-123, 2025, DOI:10.32604/iasc.2025.060364 - 23 January 2025

    Abstract This review synthesises and assesses the most recent developments in Unmanned Aerial Vehicles (UAVs) and swarm robotics, with a specific emphasis on optimisation strategies, path planning, and formation control. The study identifies key methodologies that are driving progress in the field by conducting a comprehensive analysis of seven critical publications. The following are included: sensor-based platforms that facilitate effective obstacle avoidance, cluster-based hierarchical path planning for efficient navigation, and adaptive hybrid controllers for dynamic environments. The review emphasises the substantial contribution of optimisation techniques, including Max-Min Ant Colony Optimisation (MMACO), to the improvement of convergence… More >

  • Open Access

    PROCEEDINGS

    Subdivisional Modelling Method for Matched Metal Additive Manufacturing and Its Implementation on Novel Negative Poisson's Ratio Lattice Structures

    Ruiqi Pan1, Wei Xiong2, Liang Hao1,*, Yan Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011651

    Abstract As metal additive manufacturing (MAM) becomes more widely used in engineering, an increasing number of novel lattice structures are being developed. However, most recently developed lattice structures do not match the requirement of MAM efficiently. Based on the Design for Additive Manufacturing (DfAM), comparing the mainstream implicit and explicit modelling methods, it is proposed to introduce a Subdivisional (Sub-D) modelling method to model lattice structures with better modelling versatility, 3D printability, and mechanical properties. To this end, a novel negative Poisson's ratio (NPR) structure is developed as an example to demonstrate the efficient and wide… More >

  • Open Access

    ARTICLE

    An Optimisation Strategy for Electric Vehicle Charging Station Layout Incorporating Mini Batch K-Means and Simulated Annealing Algorithms

    Haojie Yang, Xiang Wen, Peng Geng*

    Journal on Artificial Intelligence, Vol.6, pp. 283-300, 2024, DOI:10.32604/jai.2024.056303 - 18 October 2024

    Abstract To enhance the rationality of the layout of electric vehicle charging stations, meet the actual needs of users, and optimise the service range and coverage efficiency of charging stations, this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms. By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius, the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are… More >

  • Open Access

    ARTICLE

    Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation

    Abdulrahman M. Abdulghani*

    Journal on Artificial Intelligence, Vol.6, pp. 241-259, 2024, DOI:10.32604/jai.2024.056259 - 16 October 2024

    Abstract Cloud computing has rapidly evolved into a critical technology, seamlessly integrating into various aspects of daily life. As user demand for cloud services continues to surge, the need for efficient virtualization and resource management becomes paramount. At the core of this efficiency lies task scheduling, a complex process that determines how tasks are allocated and executed across cloud resources. While extensive research has been conducted in the area of task scheduling, optimizing multiple objectives simultaneously remains a significant challenge due to the NP (Non-deterministic Polynomial) Complete nature of the problem. This study aims to address… More >

  • Open Access

    REVIEW

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

    Baydaa Abdul Kareem1,2, Salah L. Zubaidi2,3, Nadhir Al-Ansari4,*, Yousif Raad Muhsen2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 1-41, 2024, DOI:10.32604/cmes.2023.027954 - 22 September 2023

    Abstract Forecasting river flow is crucial for optimal planning, management, and sustainability using freshwater resources. Many machine learning (ML) approaches have been enhanced to improve streamflow prediction. Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches. Current researchers have also emphasised using hybrid models to improve forecast accuracy. Accordingly, this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years, summarising data preprocessing, univariate machine learning modelling strategy, advantages and disadvantages of standalone ML… More > Graphic Abstract

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

  • Open Access

    ARTICLE

    Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather

    Hanpeng Kou1, Tianlong Bu1, Leer Mao1, Yihong Jiao2,*, Chunming Liu2

    Energy Engineering, Vol.121, No.4, pp. 1027-1048, 2024, DOI:10.32604/ee.2023.045358 - 26 March 2024

    Abstract

    In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network, a multi-objective two-stage decentralised wind power planning method is proposed in the paper, which takes into account the network loss correction for the extreme cold region. Firstly, an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation; secondly, a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account

    More > Graphic Abstract

    Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather

Displaying 1-10 on page 1 of 34. Per Page